MathDB

1968 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(35)

1968 AMC 12 #35 - Ratio of Areas in Semicircle

In this diagram the center of the circle is OO, the radius is aa inches, chord EFEF is parallel to chord CD,O,G,H,JCD, O, G, H, J are collinear, and GG is the midpoint of CDCD. Let KK (sq. in.) represent the area of trapezoid CDFECDFE and let RR (sq. in.) represent the area of rectangle ELMFELMF. Then, as CDCD and EFEF are translated upward so that OGOG increases toward the value aa, while JHJH always equals HGHG, the ratio K:RK:R become arbitrarily close to: [asy] size((270)); draw((0,0)--(10,0)..(5,5)..(0,0)); draw((5,0)--(5,5)); draw((9,3)--(1,3)--(1,1)--(9,1)--cycle); draw((9.9,1)--(.1,1)); label("O", (5,0), S); label("a", (7.5,0), S); label("G", (5,1), SE); label("J", (5,5), N); label("H", (5,3), NE); label("E", (1,3), NW); label("L", (1,1), S); label("C", (.1,1), W); label("F", (9,3), NE); label("M", (9,1), S); label("D", (9.9,1), E); [/asy] <spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 12+12<spanclass=latexbold>(E)</span> 12+1<span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ \sqrt{2} \qquad<span class='latex-bold'>(D)</span>\ \frac{1}{\sqrt{2}}+\frac{1}{2} \qquad<span class='latex-bold'>(E)</span>\ \frac{1}{\sqrt{2}}+1