MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1968 AMC 12/AHSME
7
7
Part of
1968 AMC 12/AHSME
Problems
(1)
Length of Segment
Source: 1968 AHSME Problem #7
8/31/2011
Let
O
O
O
be the intersection point of medians
A
P
AP
A
P
and
C
Q
CQ
CQ
of triangle
A
B
C
ABC
A
BC
. If
O
Q
OQ
OQ
is
3
3
3
inches, then
O
P
OP
OP
, in inches, is:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
9
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
6
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
9
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
undetermined
<span class='latex-bold'>(A)</span>\ 3 \qquad <span class='latex-bold'>(B)</span>\ \dfrac{9}{2} \qquad <span class='latex-bold'>(C)</span>\ 6 \qquad <span class='latex-bold'>(D)</span>\ 9 \qquad <span class='latex-bold'>(E)</span>\ \text{undetermined}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
2
9
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
6
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
9
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
undetermined
ratio
AMC