MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1968 AMC 12/AHSME
27
27
Part of
1968 AMC 12/AHSME
Problems
(1)
1968 AMC 12 #27 - Summation
Source:
1/1/2012
Let
S
n
=
1
−
2
+
3
−
4
+
⋯
+
(
−
1
)
n
−
1
n
,
n
=
1
,
2
,
⋯
S_n=1-2+3-4+\cdots +(-1)^{n-1}n,\ n=1, 2, \cdots
S
n
=
1
−
2
+
3
−
4
+
⋯
+
(
−
1
)
n
−
1
n
,
n
=
1
,
2
,
⋯
. Then
S
17
+
S
33
+
S
50
S_{17}+S_{33}+S_{50}
S
17
+
S
33
+
S
50
equals:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
−
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
−
2
<span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ 2 \qquad<span class='latex-bold'>(D)</span>\ -1 \qquad<span class='latex-bold'>(E)</span>\ -2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
−
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
−
2
absolute value
AMC