MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1968 AMC 12/AHSME
26
26
Part of
1968 AMC 12/AHSME
Problems
(1)
1968 AMC 12 #26 - Sum of Digits
Source:
1/1/2012
Let
S
=
2
+
4
+
6
+
⋯
+
2
N
S=2+4+6+ \cdots +2N
S
=
2
+
4
+
6
+
⋯
+
2
N
, where
N
N
N
is the smallest positive integer such that
S
>
1
,
000
,
000
S>1,000,000
S
>
1
,
000
,
000
. Then the sum of the digits of
N
N
N
is:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
27
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
12
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
6
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
1
<span class='latex-bold'>(A)</span>\ 27 \qquad<span class='latex-bold'>(B)</span>\ 12 \qquad<span class='latex-bold'>(C)</span>\ 6 \qquad<span class='latex-bold'>(D)</span>\ 2 \qquad<span class='latex-bold'>(E)</span>\ 1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
27
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
12
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
6
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
1
AMC