If all the logarithms are real numbers, the equality
log(x+3)+log(x−1)=log(x2−2x−3)
is satisfied for:<spanclass=′latex−bold′>(A)</span>all real values ofx<spanclass=′latex−bold′>(B)</span>no real values ofx<spanclass=′latex−bold′>(C)</span>all real values ofxexceptx=0<spanclass=′latex−bold′>(D)</span>no real values ofxexceptx=0<spanclass=′latex−bold′>(E)</span>all real values ofxexceptx=1