MathDB
Length of Segment

Source: 1968 AHSME Problem #7

August 31, 2011
ratioAMC

Problem Statement

Let OO be the intersection point of medians APAP and CQCQ of triangle ABCABC. If OQOQ is 33 inches, then OPOP, in inches, is:
<spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 92<spanclass=latexbold>(C)</span> 6<spanclass=latexbold>(D)</span> 9<spanclass=latexbold>(E)</span> undetermined<span class='latex-bold'>(A)</span>\ 3 \qquad <span class='latex-bold'>(B)</span>\ \dfrac{9}{2} \qquad <span class='latex-bold'>(C)</span>\ 6 \qquad <span class='latex-bold'>(D)</span>\ 9 \qquad <span class='latex-bold'>(E)</span>\ \text{undetermined}