MathDB
1968 AMC 12 #25 - Racing

Source:

January 1, 2012
AMC

Problem Statement

Ace runs with constant speed and Flash runs xx times as fast, x>1x>1. Flash gives Ace a head start of yy yards, and, at a given signal, they start off in the same direction. Then the number of yards Flash must run to catch Ace is:
<spanclass=latexbold>(A)</span> xy<spanclass=latexbold>(B)</span> yx+y<spanclass=latexbold>(C)</span> xyx1<spanclass=latexbold>(D)</span> x+yx+1<spanclass=latexbold>(E)</span> x+yx1<span class='latex-bold'>(A)</span>\ xy \qquad<span class='latex-bold'>(B)</span>\ \frac{y}{x+y} \qquad<span class='latex-bold'>(C)</span>\ \frac{xy}{x-1} \qquad<span class='latex-bold'>(D)</span>\ \frac{x+y}{x+1} \qquad<span class='latex-bold'>(E)</span>\ \frac{x+y}{x-1}