MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN M Problems
PEN M Problems
Part of
PEN Problems
Subcontests
(35)
35
1
Hide problems
M 35
The first four terms of an infinite sequence
S
S
S
of decimal digits are
1
1
1
,
9
9
9
,
8
8
8
,
2
2
2
, and succeeding terms are given by the final digit in the sum of the four immediately preceding terms. Thus
S
S
S
begins
1
1
1
,
9
9
9
,
8
8
8
,
2
2
2
,
0
0
0
,
9
9
9
,
9
9
9
,
0
0
0
,
8
8
8
,
6
6
6
,
3
3
3
,
7
7
7
,
4
4
4
,
⋯
\cdots
⋯
. Do the digits
3
3
3
,
0
0
0
,
4
4
4
,
4
4
4
ever come up consecutively in
S
S
S
?
34
1
Hide problems
M 34
The sequence of integers
{
x
n
}
n
≥
1
\{ x_{n}\}_{n\ge1}
{
x
n
}
n
≥
1
is defined as follows:
x
1
=
1
,
x
n
+
1
=
1
+
x
1
2
+
⋯
+
x
n
2
(
n
=
1
,
2
,
3
⋯
)
.
x_{1}=1, \;\; x_{n+1}=1+{x_{1}}^{2}+\cdots+{x_{n}}^{2}\;(n=1,2,3 \cdots).
x
1
=
1
,
x
n
+
1
=
1
+
x
1
2
+
⋯
+
x
n
2
(
n
=
1
,
2
,
3
⋯
)
.
Prove that there are no squares of natural numbers in this sequence except
x
1
x_{1}
x
1
.
33
1
Hide problems
M 33
The sequence
{
x
n
}
n
≥
1
\{x_{n}\}_{n \ge 1}
{
x
n
}
n
≥
1
is defined by x_{1} \equal{} 2, x_{n \plus{} 1} \equal{} \frac {2 \plus{} x_{n}}{1 \minus{} 2x_{n}}\;\; (n \in \mathbb{N}). Prove that a) x_{n}\not \equal{} 0 for all
n
∈
N
n \in \mathbb{N}
n
∈
N
, b)
{
x
n
}
n
≥
1
\{x_{n}\}_{n \ge 1}
{
x
n
}
n
≥
1
is not periodic.
32
1
Hide problems
M 32
In an increasing infinite sequence of positive integers, every term starting from the
2002
2002
2002
-th term divides the sum of all preceding terms. Prove that every term starting from some term is equal to the sum of all preceding terms.
31
1
Hide problems
M 31
Each term of an infinite sequence of natural numbers is obtained from the previous term by adding to it one of its nonzero digits. Prove that this sequence contains an even number.
30
1
Hide problems
M 30
Let
k
k
k
be a positive integer. Prove that there exists an infinite monotone increasing sequence of integers
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
such that
a
n
divides
a
n
+
1
2
+
k
and
a
n
+
1
divides
a
n
2
+
k
a_{n}\; \text{divides}\; a_{n+1}^{2}+k \;\; \text{and}\;\; a_{n+1}\; \text{divides}\; a_{n}^{2}+k
a
n
divides
a
n
+
1
2
+
k
and
a
n
+
1
divides
a
n
2
+
k
for all
n
∈
N
n \in \mathbb{N}
n
∈
N
.
29
1
Hide problems
M 29
The sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
is defined by
a
1
=
1
a_{1}=1
a
1
=
1
and
a
n
+
1
=
a
n
2
+
1
4
a
n
(
n
∈
N
)
.
a_{n+1}= \frac{a_{n}}{2}+\frac{1}{4a_{n}}\; (n \in \mathbb{N}).
a
n
+
1
=
2
a
n
+
4
a
n
1
(
n
∈
N
)
.
Prove that
2
2
a
n
2
−
1
\sqrt{\frac{2}{2a_{n}^{2}-1}}
2
a
n
2
−
1
2
is a positive integer for
n
>
1
n>1
n
>
1
.
28
1
Hide problems
M 28
Let
{
u
n
}
n
≥
0
\{u_{n}\}_{n \ge 0}
{
u
n
}
n
≥
0
be a sequence of integers satisfying the recurrence relation
u
n
+
2
=
u
n
+
1
2
−
u
n
u_{n+2}=u_{n+1}^2 -u_{n}
u
n
+
2
=
u
n
+
1
2
−
u
n
(
n
∈
N
)
(n \in \mathbb{N})
(
n
∈
N
)
. Suppose that
u
0
=
39
u_{0}=39
u
0
=
39
and
u
1
=
45
u_{1}=45
u
1
=
45
. Prove that
1986
1986
1986
divides infinitely many terms of this sequence.
27
1
Hide problems
M 27
Let
p
≥
3
p \ge 3
p
≥
3
be a prime number. The sequence
{
a
n
}
n
≥
0
\{a_{n}\}_{n \ge 0}
{
a
n
}
n
≥
0
is defined by
a
n
=
n
a_{n}=n
a
n
=
n
for all
0
≤
n
≤
p
−
1
0 \le n \le p-1
0
≤
n
≤
p
−
1
, and
a
n
=
a
n
−
1
+
a
n
−
p
a_{n}=a_{n-1}+a_{n-p}
a
n
=
a
n
−
1
+
a
n
−
p
for all
n
≥
p
n \ge p
n
≥
p
. Compute
a
p
3
(
m
o
d
p
)
a_{p^{3}}\; \pmod{p}
a
p
3
(
mod
p
)
.
26
1
Hide problems
M 26
Let
p
p
p
be an odd prime
p
p
p
such that
2
h
≠
1
(
m
o
d
p
)
2h \neq 1 \; \pmod{p}
2
h
=
1
(
mod
p
)
for all
h
∈
N
h \in \mathbb{N}
h
∈
N
with
h
<
p
−
1
h< p-1
h
<
p
−
1
, and let
a
a
a
be an even integer with
a
∈
]
p
2
,
p
[
a \in] \tfrac{p}{2}, p [
a
∈
]
2
p
,
p
[
. The sequence
{
a
n
}
n
≥
0
\{a_n\}_{n \ge 0}
{
a
n
}
n
≥
0
is defined by
a
0
=
a
a_{0}=a
a
0
=
a
,
a
n
+
1
=
p
−
b
n
a_{n+1}=p -b_{n}
a
n
+
1
=
p
−
b
n
\;
(
n
≥
0
)
(n \ge 0)
(
n
≥
0
)
, where
b
n
b_{n}
b
n
is the greatest odd divisor of
a
n
a_n
a
n
. Show that the sequence
{
a
n
}
n
≥
0
\{a_n\}_{n \ge 0}
{
a
n
}
n
≥
0
is periodic and find its minimal (positive) period.
25
1
Hide problems
M 25
Let
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
be a sequence of positive integers such that
0
<
a
n
+
1
−
a
n
≤
2001
for all
n
∈
N
.
0 < a_{n+1}-a_{n}\le 2001 \;\; \text{for all}\;\; n \in \mathbb{N}.
0
<
a
n
+
1
−
a
n
≤
2001
for all
n
∈
N
.
Show that there are infinitely many pairs
(
p
,
q
)
(p, q)
(
p
,
q
)
of positive integers such that
p
>
q
p>q
p
>
q
and
a
q
∣
a
p
a_{q}\; \vert \; a_{p}
a
q
∣
a
p
.
24
1
Hide problems
M 24
Let
k
k
k
be a given positive integer. The sequence
x
n
x_n
x
n
is defined as follows:
x
1
=
1
x_1 =1
x
1
=
1
and
x
n
+
1
x_{n+1}
x
n
+
1
is the least positive integer which is not in
{
x
1
,
x
2
,
.
.
.
,
x
n
,
x
1
+
k
,
x
2
+
2
k
,
.
.
.
,
x
n
+
n
k
}
\{x_{1}, x_{2},..., x_{n}, x_{1}+k, x_{2}+2k,..., x_{n}+nk \}
{
x
1
,
x
2
,
...
,
x
n
,
x
1
+
k
,
x
2
+
2
k
,
...
,
x
n
+
nk
}
. Show that there exist real number
a
a
a
such that
x
n
=
⌊
a
n
⌋
x_n = \lfloor an\rfloor
x
n
=
⌊
an
⌋
for all positive integer
n
n
n
.
23
1
Hide problems
M 23
Define
{
d
(
n
,
0
)
=
d
(
n
,
n
)
=
1
(
n
≥
0
)
,
m
d
(
n
,
m
)
=
m
d
(
n
−
1
,
m
)
+
(
2
n
−
m
)
d
(
n
−
1
,
m
−
1
)
(
0
<
m
<
n
)
.
\begin{cases}d(n, 0)=d(n, n)=1&(n \ge 0),\\ md(n, m)=md(n-1, m)+(2n-m)d(n-1,m-1)&(0<m<n).\end{cases}
{
d
(
n
,
0
)
=
d
(
n
,
n
)
=
1
m
d
(
n
,
m
)
=
m
d
(
n
−
1
,
m
)
+
(
2
n
−
m
)
d
(
n
−
1
,
m
−
1
)
(
n
≥
0
)
,
(
0
<
m
<
n
)
.
Prove that
d
(
n
,
m
)
d(n, m)
d
(
n
,
m
)
are integers for all
m
,
n
∈
N
m, n \in \mathbb{N}
m
,
n
∈
N
.
22
1
Hide problems
M 22
Let
a
\, a
a
, and
b
b \,
b
be odd positive integers. Define the sequence
{
f
n
}
n
≥
1
\{f_n\}_{n\ge 1}
{
f
n
}
n
≥
1
by putting
f
1
=
a
,
\, f_1 = a,
f
1
=
a
,
f
2
=
b
,
f_2 = b, \,
f
2
=
b
,
and by letting
f
n
\, f_n \,
f
n
for
n
≥
3
\, n \geq 3 \,
n
≥
3
be the greatest odd divisor of
f
n
−
1
+
f
n
−
2
\, f_{n-1} + f_{n-2}
f
n
−
1
+
f
n
−
2
. Show that
f
n
\, f_n \,
f
n
is constant for sufficiently large
n
\, n \,
n
and determine the eventual value as a function of
a
\, a \,
a
and
b
\, b
b
.
21
1
Hide problems
M 21
In the sequence
1
,
0
,
1
,
0
,
1
,
0
,
3
,
5
,
⋯
1, 0, 1, 0, 1, 0, 3, 5, \cdots
1
,
0
,
1
,
0
,
1
,
0
,
3
,
5
,
⋯
, each member after the sixth one is equal to the last digit of the sum of the six members just preceeding it. Prove that in this sequence one cannot find the following group of six consecutive members:
0
,
1
,
0
,
1
,
0
,
1
0, 1, 0, 1, 0, 1
0
,
1
,
0
,
1
,
0
,
1
20
1
Hide problems
M 20
Each term of a sequence of natural numbers is obtained from the previous term by adding to it its largest digit. What is the maximal number of successive odd terms in such a sequence?
19
1
Hide problems
M 19
A sequence with first two terms equal
1
1
1
and
24
24
24
respectively is defined by the following rule: each subsequent term is equal to the smallest positive integer which has not yet occurred in the sequence and is not coprime with the previous term. Prove that all positive integers occur in this sequence.
18
1
Hide problems
M 18
Given is an integer sequence
{
a
n
}
n
≥
0
\{a_n\}_{n \ge 0}
{
a
n
}
n
≥
0
such that
a
0
=
2
a_{0}=2
a
0
=
2
,
a
1
=
3
a_{1}=3
a
1
=
3
and, for all positive integers
n
≥
1
n \ge 1
n
≥
1
,
a
n
+
1
=
2
a
n
−
1
a_{n+1}=2a_{n-1}
a
n
+
1
=
2
a
n
−
1
or
a
n
+
1
=
3
a
n
−
2
a
n
−
1
a_{n+1}= 3a_{n} - 2a_{n-1}
a
n
+
1
=
3
a
n
−
2
a
n
−
1
. Does there exist a positive integer
k
k
k
such that
1600
<
a
k
<
2000
1600 < a_{k} < 2000
1600
<
a
k
<
2000
?
17
1
Hide problems
M 17
A sequence of integers,
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
with
a
1
>
0
a_{1}>0
a
1
>
0
, is defined by
a
n
+
1
=
a
n
2
if
n
≡
0
(
m
o
d
4
)
,
a_{n+1}=\frac{a_{n}}{2}\;\;\; \text{if}\;\; n \equiv 0 \;\; \pmod{4},
a
n
+
1
=
2
a
n
if
n
≡
0
(
mod
4
)
,
a
n
+
1
=
3
a
n
+
1
if
n
≡
1
(
m
o
d
4
)
,
a_{n+1}=3 a_{n}+1 \;\;\; \text{if}\;\; n \equiv 1 \; \pmod{4},
a
n
+
1
=
3
a
n
+
1
if
n
≡
1
(
mod
4
)
,
a
n
+
1
=
2
a
n
−
1
if
n
≡
2
(
m
o
d
4
)
,
a_{n+1}=2 a_{n}-1 \;\;\; \text{if}\;\; n \equiv 2 \; \pmod{4},
a
n
+
1
=
2
a
n
−
1
if
n
≡
2
(
mod
4
)
,
a
n
+
1
=
a
n
+
1
4
if
n
≡
3
(
m
o
d
4
)
.
a_{n+1}=\frac{a_{n}+1}{4}\;\;\; \text{if}\;\; n \equiv 3 \; \pmod{4}.
a
n
+
1
=
4
a
n
+
1
if
n
≡
3
(
mod
4
)
.
Prove that there is an integer
m
m
m
such that
a
m
=
1
a_{m}=1
a
m
=
1
.
16
1
Hide problems
M 16
Define a sequence
{
a
i
}
\{a_i\}
{
a
i
}
by
a
1
=
3
a_1=3
a
1
=
3
and
a
i
+
1
=
3
a
i
a_{i+1}=3^{a_i}
a
i
+
1
=
3
a
i
for
i
≥
1
i\geq 1
i
≥
1
. Which integers between
00
00
00
and
99
99
99
inclusive occur as the last two digits in the decimal expansion of infinitely many
a
i
a_i
a
i
?
15
1
Hide problems
M 15
For a given positive integer
k
k
k
denote the square of the sum of its digits by
f
1
(
k
)
f_{1}(k)
f
1
(
k
)
and let
f
n
+
1
(
k
)
=
f
1
(
f
n
(
k
)
)
f_{n+1}(k)=f_{1}(f_{n}(k))
f
n
+
1
(
k
)
=
f
1
(
f
n
(
k
))
. Determine the value of
f
1991
(
2
1990
)
f_{1991}(2^{1990})
f
1991
(
2
1990
)
.
14
1
Hide problems
M 14
Let
x
1
x_{1}
x
1
and
x
2
x_{2}
x
2
be relatively prime positive integers. For
n
≥
2
n \ge 2
n
≥
2
, define
x
n
+
1
=
x
n
x
n
−
1
+
1
x_{n+1}=x_{n}x_{n-1}+1
x
n
+
1
=
x
n
x
n
−
1
+
1
.[*] Prove that for every
i
>
1
i>1
i
>
1
, there exists
j
>
i
j>i
j
>
i
such that
x
i
i
{x_{i}}^{i}
x
i
i
divides
x
j
j
{x_{j}}^{j}
x
j
j
. [*] Is it true that
x
1
x_{1}
x
1
must divide
x
j
j
{x_{j}}^{j}
x
j
j
for some
j
>
1
j>1
j
>
1
?
13
1
Hide problems
M 13
The sequence
{
x
n
}
\{x_{n}\}
{
x
n
}
is defined by
x
0
∈
[
0
,
1
]
,
x
n
+
1
=
1
−
∣
1
−
2
x
n
∣
.
x_{0}\in [0, 1], \; x_{n+1}=1-\vert 1-2 x_{n}\vert.
x
0
∈
[
0
,
1
]
,
x
n
+
1
=
1
−
∣1
−
2
x
n
∣.
Prove that the sequence is periodic if and only if
x
0
x_{0}
x
0
is irrational.
12
1
Hide problems
M 12
Let
k
k
k
be a fixed positive integer. The sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n\ge1}
{
a
n
}
n
≥
1
is defined by
a
1
=
k
+
1
,
a
n
+
1
=
a
n
2
−
k
a
n
+
k
.
a_{1}=k+1, a_{n+1}=a_{n}^{2}-ka_{n}+k.
a
1
=
k
+
1
,
a
n
+
1
=
a
n
2
−
k
a
n
+
k
.
Show that if
m
≠
n
m \neq n
m
=
n
, then the numbers
a
m
a_{m}
a
m
and
a
n
a_{n}
a
n
are relatively prime.
11
1
Hide problems
M 11
Let
a
1
=
11
11
a_{1}={11}^{11}
a
1
=
11
11
,
a
2
=
12
12
a_{2}={12}^{12}
a
2
=
12
12
,
a
3
=
13
13
a_{3}={13}^{13}
a
3
=
13
13
, and
a
n
=
∣
a
n
−
1
−
a
n
−
2
∣
+
∣
a
n
−
2
−
a
n
−
3
∣
,
n
≥
4.
a_{n}= \vert a_{n-1}-a_{n-2}\vert+\vert a_{n-2}-a_{n-3}\vert, n \ge 4.
a
n
=
∣
a
n
−
1
−
a
n
−
2
∣
+
∣
a
n
−
2
−
a
n
−
3
∣
,
n
≥
4.
Determine
a
14
14
a_{{14}^{14}}
a
14
14
.
10
1
Hide problems
M 10
An integer sequence satisfies
a
n
+
1
=
a
n
3
+
1999
a_{n+1}={a_n}^3 +1999
a
n
+
1
=
a
n
3
+
1999
. Show that it contains at most one square.
9
1
Hide problems
M 9
An integer sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
is defined by
a
1
=
2
,
a
n
+
1
=
⌊
3
2
a
n
⌋
.
a_{1}=2, \; a_{n+1}=\left\lfloor \frac{3}{2}a_{n}\right\rfloor.
a
1
=
2
,
a
n
+
1
=
⌊
2
3
a
n
⌋
.
Show that it has infinitely many even and infinitely many odd integers.
8
1
Hide problems
M 8
The Bernoulli sequence
{
B
n
}
n
≥
0
\{B_{n}\}_{n \ge 0}
{
B
n
}
n
≥
0
is defined by
B
0
=
1
,
B
n
=
−
1
n
+
1
∑
k
=
0
n
(
n
+
1
k
)
B
k
(
n
≥
1
)
B_{0}=1, \; B_{n}=-\frac{1}{n+1}\sum^{n}_{k=0}{{n+1}\choose k}B_{k}\;\; (n \ge 1)
B
0
=
1
,
B
n
=
−
n
+
1
1
k
=
0
∑
n
(
k
n
+
1
)
B
k
(
n
≥
1
)
Show that for all
n
∈
N
n \in \mathbb{N}
n
∈
N
,
(
−
1
)
n
B
n
−
∑
1
p
,
(-1)^{n}B_{n}-\sum \frac{1}{p},
(
−
1
)
n
B
n
−
∑
p
1
,
is an integer where the summation is done over all primes
p
p
p
such that
p
∣
2
k
−
1
p| 2k-1
p
∣2
k
−
1
.
7
1
Hide problems
M 7
Prove that the sequence
{
y
n
}
n
≥
1
\{y_{n}\}_{n \ge 1}
{
y
n
}
n
≥
1
defined by
y
0
=
1
,
y
n
+
1
=
1
2
(
3
y
n
+
5
y
n
2
−
4
)
y_{0}=1, \; y_{n+1}= \frac{1}{2}\left( 3y_{n}+\sqrt{5y_{n}^{2}-4}\right)
y
0
=
1
,
y
n
+
1
=
2
1
(
3
y
n
+
5
y
n
2
−
4
)
consists only of integers.
6
1
Hide problems
M 6
The sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
is defined by
a
1
=
1
,
a
n
+
1
=
2
a
n
+
3
a
n
2
+
1
.
a_{1}=1, \; a_{n+1}=2a_{n}+\sqrt{3a_{n}^{2}+1}.
a
1
=
1
,
a
n
+
1
=
2
a
n
+
3
a
n
2
+
1
.
Show that
a
n
a_{n}
a
n
is an integer for every
n
n
n
.
5
1
Hide problems
M 5
Show that there is a unique sequence of integers
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
with
a
1
=
1
,
a
2
=
2
,
a
4
=
12
,
a
n
+
1
a
n
−
1
=
a
n
2
±
1
(
n
≥
2
)
.
a_{1}=1, \; a_{2}=2, \; a_{4}=12, \; a_{n+1}a_{n-1}=a_{n}^{2}\pm1 \;\; (n \ge 2).
a
1
=
1
,
a
2
=
2
,
a
4
=
12
,
a
n
+
1
a
n
−
1
=
a
n
2
±
1
(
n
≥
2
)
.
4
1
Hide problems
M 4
The sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
is defined by
a
1
=
1
,
a
2
=
2
,
a
3
=
24
,
a
n
=
6
a
n
−
1
2
a
n
−
3
−
8
a
n
−
1
a
n
−
2
2
a
n
−
2
a
n
−
3
(
n
≥
4
)
.
a_{1}=1, \; a_{2}=2, \; a_{3}=24, \; a_{n}=\frac{ 6a_{n-1}^{2}a_{n-3}-8a_{n-1}a_{n-2}^{2}}{a_{n-2}a_{n-3}}\ \ \ \ (n\ge4).
a
1
=
1
,
a
2
=
2
,
a
3
=
24
,
a
n
=
a
n
−
2
a
n
−
3
6
a
n
−
1
2
a
n
−
3
−
8
a
n
−
1
a
n
−
2
2
(
n
≥
4
)
.
Show that
a
n
a_{n}
a
n
is an integer for all
n
n
n
, and show that
n
∣
a
n
n|a_{n}
n
∣
a
n
for every
n
∈
N
n\in\mathbb{N}
n
∈
N
.
3
1
Hide problems
M 3
Let
f
(
n
)
=
n
+
⌊
n
⌋
f(n)=n+\lfloor \sqrt{n}\rfloor
f
(
n
)
=
n
+
⌊
n
⌋
. Prove that, for every positive integer
m
m
m
, the sequence
m
,
f
(
m
)
,
f
(
f
(
m
)
)
,
f
(
f
(
f
(
m
)
)
)
,
⋯
m, f(m), f(f(m)), f(f(f(m))), \cdots
m
,
f
(
m
)
,
f
(
f
(
m
))
,
f
(
f
(
f
(
m
)))
,
⋯
contains at least one square of an integer.
2
1
Hide problems
M 2
An integer sequence
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
is defined by
a
1
=
1
,
a
n
+
1
=
a
n
+
⌊
a
n
⌋
.
a_{1}=1, \; a_{n+1}=a_{n}+\lfloor \sqrt{a_{n}}\rfloor.
a
1
=
1
,
a
n
+
1
=
a
n
+
⌊
a
n
⌋
.
Show that
a
n
a_{n}
a
n
is a square if and only if
n
=
2
k
+
k
−
2
n=2^{k}+k-2
n
=
2
k
+
k
−
2
for some
k
∈
N
k \in \mathbb{N}
k
∈
N
.
1
1
Hide problems
M 1
Let
P
(
x
)
P(x)
P
(
x
)
be a nonzero polynomial with integer coefficients. Let
a
0
=
0
a_{0}=0
a
0
=
0
and for
i
≥
0
i \ge 0
i
≥
0
define
a
i
+
1
=
P
(
a
i
)
a_{i+1}=P(a_{i})
a
i
+
1
=
P
(
a
i
)
. Show that
gcd
(
a
m
,
a
n
)
=
a
gcd
(
m
,
n
)
\gcd ( a_{m}, a_{n})=a_{ \gcd (m, n)}
g
cd
(
a
m
,
a
n
)
=
a
g
c
d
(
m
,
n
)
for all
m
,
n
∈
N
m, n \in \mathbb{N}
m
,
n
∈
N
.