MathDB
M 30

Source:

May 25, 2007
Recursive Sequences

Problem Statement

Let kk be a positive integer. Prove that there exists an infinite monotone increasing sequence of integers {an}n1\{a_{n}\}_{n \ge 1} such that an  divides  an+12+k    and    an+1  divides  an2+ka_{n}\; \text{divides}\; a_{n+1}^{2}+k \;\; \text{and}\;\; a_{n+1}\; \text{divides}\; a_{n}^{2}+k for all nNn \in \mathbb{N}.