MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN M Problems
30
M 30
M 30
Source:
May 25, 2007
Recursive Sequences
Problem Statement
Let
k
k
k
be a positive integer. Prove that there exists an infinite monotone increasing sequence of integers
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
such that
a
n
divides
a
n
+
1
2
+
k
and
a
n
+
1
divides
a
n
2
+
k
a_{n}\; \text{divides}\; a_{n+1}^{2}+k \;\; \text{and}\;\; a_{n+1}\; \text{divides}\; a_{n}^{2}+k
a
n
divides
a
n
+
1
2
+
k
and
a
n
+
1
divides
a
n
2
+
k
for all
n
∈
N
n \in \mathbb{N}
n
∈
N
.
Back to Problems
View on AoPS