MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN M Problems
23
23
Part of
PEN M Problems
Problems
(1)
M 23
Source:
5/25/2007
Define
{
d
(
n
,
0
)
=
d
(
n
,
n
)
=
1
(
n
≥
0
)
,
m
d
(
n
,
m
)
=
m
d
(
n
−
1
,
m
)
+
(
2
n
−
m
)
d
(
n
−
1
,
m
−
1
)
(
0
<
m
<
n
)
.
\begin{cases}d(n, 0)=d(n, n)=1&(n \ge 0),\\ md(n, m)=md(n-1, m)+(2n-m)d(n-1,m-1)&(0<m<n).\end{cases}
{
d
(
n
,
0
)
=
d
(
n
,
n
)
=
1
m
d
(
n
,
m
)
=
m
d
(
n
−
1
,
m
)
+
(
2
n
−
m
)
d
(
n
−
1
,
m
−
1
)
(
n
≥
0
)
,
(
0
<
m
<
n
)
.
Prove that
d
(
n
,
m
)
d(n, m)
d
(
n
,
m
)
are integers for all
m
,
n
∈
N
m, n \in \mathbb{N}
m
,
n
∈
N
.
induction
Recursive Sequences