MathDB
M 4

Source:

May 25, 2007
EulerRecursive Sequences

Problem Statement

The sequence {an}n1 \{a_{n}\}_{n \ge 1} is defined by a1=1,  a2=2,  a3=24,  an=6an12an38an1an22an2an3    (n4). a_{1}=1, \; a_{2}=2, \; a_{3}=24, \; a_{n}=\frac{ 6a_{n-1}^{2}a_{n-3}-8a_{n-1}a_{n-2}^{2}}{a_{n-2}a_{n-3}}\ \ \ \ (n\ge4). Show that an a_{n} is an integer for all n n, and show that nan n|a_{n} for every nN n\in\mathbb{N}.