The sequence {xn}n≥1 is defined by
x_{1} \equal{} 2, x_{n \plus{} 1} \equal{} \frac {2 \plus{} x_{n}}{1 \minus{} 2x_{n}}\;\; (n \in \mathbb{N}).
Prove that
a) x_{n}\not \equal{} 0 for all n∈N,
b) {xn}n≥1 is not periodic. trigonometryinductionRecursive Sequences