MathDB
M 17

Source:

May 25, 2007
modular arithmeticRecursive Sequences

Problem Statement

A sequence of integers, {an}n1\{a_{n}\}_{n \ge 1} with a1>0a_{1}>0, is defined by an+1=an2      if    n0    (mod4),a_{n+1}=\frac{a_{n}}{2}\;\;\; \text{if}\;\; n \equiv 0 \;\; \pmod{4}, an+1=3an+1      if    n1  (mod4),a_{n+1}=3 a_{n}+1 \;\;\; \text{if}\;\; n \equiv 1 \; \pmod{4}, an+1=2an1      if    n2  (mod4),a_{n+1}=2 a_{n}-1 \;\;\; \text{if}\;\; n \equiv 2 \; \pmod{4}, an+1=an+14      if    n3  (mod4).a_{n+1}=\frac{a_{n}+1}{4}\;\;\; \text{if}\;\; n \equiv 3 \; \pmod{4}. Prove that there is an integer mm such that am=1a_{m}=1.