MathDB
M 29

Source:

May 25, 2007
inductiontrigonometryRecursive Sequences

Problem Statement

The sequence {an}n1\{a_{n}\}_{n \ge 1} is defined by a1=1a_{1}=1 and an+1=an2+14an  (nN).a_{n+1}= \frac{a_{n}}{2}+\frac{1}{4a_{n}}\; (n \in \mathbb{N}). Prove that 22an21\sqrt{\frac{2}{2a_{n}^{2}-1}} is a positive integer for n>1n>1.