MathDB
M 1

Source:

May 25, 2007
algebrapolynomialinductionRecursive Sequences

Problem Statement

Let P(x)P(x) be a nonzero polynomial with integer coefficients. Let a0=0a_{0}=0 and for i0i \ge 0 define ai+1=P(ai)a_{i+1}=P(a_{i}). Show that gcd(am,an)=agcd(m,n)\gcd ( a_{m}, a_{n})=a_{ \gcd (m, n)} for all m,nNm, n \in \mathbb{N}.