MathDB

2008 Balkan MO Shortlist

Part of Balkan MO Shortlist

Subcontests

(21)

A verbose problem asking something which the problem itself doesn't know

We consider the set \begin{align*} \mathbb{C}^{\nu} = \{ (z_1,z_2, \ldots , z_{\nu}) \in \mathbb{C} \},\qquad \nu \geq 2 \end{align*} and the function ϕ:CνCν\phi : \mathbb{C}^{\nu} \longrightarrow \mathbb{C}^{\nu} mapping every element (z1,z2,,zν)Cν(z_1,z_2, \ldots , z_{\nu}) \in \mathbb{C}^{\nu} to \begin{align*}\phi ( z_1,z_2, \ldots , z_{\nu})= \left( z_1-z_2, z_2-z_3, \ldots, z_{\nu}-z_1 \right) \end{align*} We also consider the ν\nu-tuple (ω0,ω1,,ων1)(\omega_0, \omega_1, \ldots , \omega_{\nu-1} ) Cν\in \mathbb{C}^{\nu} of the nn-th roots of 1-1, where \begin{align*} \omega_{\mu} = \cos \left( \frac{\pi + 2\mu \pi }{\nu} \right) + \iota \sin \left( \frac{\pi + 2\mu \pi}{\nu} \right) \qquad \mu =0,1, \ldots , \nu -1 \end{align*} Let after κ\kappa (where κ\kappa \in N\mathbb{N} ), successive applications of ϕ\phi to the element (ω0,ω1,,ων1)(\omega_0, \omega_1, \ldots , \omega_{\nu-1} ), we obtain the element \begin{align*} \phi ^{(\kappa)} \left( \omega_0, \omega_1, \ldots , \omega_{\nu-1} \right) =\left( Z_{\kappa 1}, Z_{\kappa 2}, \ldots , Z_{\kappa \nu } \right) \end{align*} Determine
[*] the values of ν\nu for which all coordinates of ϕ(κ)(ω0,ω1,,ων1)\phi ^{(\kappa)} \left( \omega_0, \omega_1, \ldots , \omega_{\nu-1} \right) have measures less than or equal to 11 [*] for ν=4\nu =4, the minimal value of κN\kappa \in \mathbb{N}, for which \begin{align*} \mid Z_{\kappa i} \mid \geq 2^{100} \qquad \qquad 1 \le i \le 4 \end{align*}