MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
A5
A5
Part of
2008 Balkan MO Shortlist
Problems
(1)
Find f and x so that the equality holds
Source: Balkan MO ShortList 2008 A5
4/6/2020
Consider an integer
n
≥
1
n \geq 1
n
≥
1
,
a
1
,
a
2
,
…
,
a
n
a_1,a_2, \ldots , a_n
a
1
,
a
2
,
…
,
a
n
real numbers in
[
−
1
,
1
]
[-1,1]
[
−
1
,
1
]
satisfying \begin{align*}a_1+a_2+\ldots +a_n=0 \end{align*} and a function
f
:
[
−
1
,
1
]
↦
R
f: [-1,1] \mapsto \mathbb{R}
f
:
[
−
1
,
1
]
↦
R
such \begin{align*} \mid f(x)-f(y) \mid \le \mid x-y \mid \end{align*} for every
x
,
y
∈
[
−
1
,
1
]
x,y \in [-1,1]
x
,
y
∈
[
−
1
,
1
]
. Prove \begin{align*} \left| f(x) - \frac{f(a_1) +f(a_2) + \ldots + f(a_n)}{n} \right| \le 1 \end{align*} for every
x
x
x
∈
[
−
1
,
1
]
\in [-1,1]
∈
[
−
1
,
1
]
. For a given sequence
a
1
,
a
2
,
…
,
a
n
a_1,a_2, \ldots ,a_n
a
1
,
a
2
,
…
,
a
n
, Find
f
f
f
and
x
x
x
so hat the equality holds.