A verbose problem asking something which the problem itself doesn't know
Source: Balkan MO ShortList 2008 A4
April 6, 2020
Problem Statement
We consider the set
\begin{align*} \mathbb{C}^{\nu} = \{ (z_1,z_2, \ldots , z_{\nu}) \in \mathbb{C} \},\qquad \nu \geq 2 \end{align*}
and the function mapping every element to
\begin{align*}\phi ( z_1,z_2, \ldots , z_{\nu})= \left( z_1-z_2, z_2-z_3, \ldots, z_{\nu}-z_1 \right) \end{align*}
We also consider the tuple of the th roots of , where
\begin{align*} \omega_{\mu} = \cos \left( \frac{\pi + 2\mu \pi }{\nu} \right) + \iota \sin \left( \frac{\pi + 2\mu \pi}{\nu} \right) \qquad \mu =0,1, \ldots , \nu -1 \end{align*}
Let after (where ), successive applications of to the element , we obtain the element
\begin{align*} \phi ^{(\kappa)} \left( \omega_0, \omega_1, \ldots , \omega_{\nu-1} \right) =\left( Z_{\kappa 1}, Z_{\kappa 2}, \ldots , Z_{\kappa \nu } \right) \end{align*}
Determine[*] the values of for which all coordinates of have measures less than or equal to
[*] for , the minimal value of , for which
\begin{align*} \mid Z_{\kappa i} \mid \geq 2^{100} \qquad \qquad 1 \le i \le 4 \end{align*}