MathDB
Inequality on three variables

Source: Balkan MO ShortList 2008 A6

April 6, 2020

Problem Statement

Prove that if x,y,zR+x,y,z \in \mathbb{R}^+ such that xy,yz,zxxy,yz,zx are sidelengths of a triangle and kk \in [1,1][-1,1], then \begin{align*} \sum \frac{\sqrt{xy}}{\sqrt{xz+yz+kxy}} \geq 2 \sqrt{1-k} \end{align*} Determine the equality condition too.