MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
A4
A4
Part of
2008 Balkan MO Shortlist
Problems
(1)
A verbose problem asking something which the problem itself doesn't know
Source: Balkan MO ShortList 2008 A4
4/6/2020
We consider the set \begin{align*} \mathbb{C}^{\nu} = \{ (z_1,z_2, \ldots , z_{\nu}) \in \mathbb{C} \},\qquad \nu \geq 2 \end{align*} and the function
ϕ
:
C
ν
⟶
C
ν
\phi : \mathbb{C}^{\nu} \longrightarrow \mathbb{C}^{\nu}
ϕ
:
C
ν
⟶
C
ν
mapping every element
(
z
1
,
z
2
,
…
,
z
ν
)
∈
C
ν
(z_1,z_2, \ldots , z_{\nu}) \in \mathbb{C}^{\nu}
(
z
1
,
z
2
,
…
,
z
ν
)
∈
C
ν
to \begin{align*}\phi ( z_1,z_2, \ldots , z_{\nu})= \left( z_1-z_2, z_2-z_3, \ldots, z_{\nu}-z_1 \right) \end{align*} We also consider the
ν
−
\nu-
ν
−
tuple
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
(\omega_0, \omega_1, \ldots , \omega_{\nu-1} )
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
∈
C
ν
\in \mathbb{C}^{\nu}
∈
C
ν
of the
n
−
n-
n
−
th roots of
−
1
-1
−
1
, where \begin{align*} \omega_{\mu} = \cos \left( \frac{\pi + 2\mu \pi }{\nu} \right) + \iota \sin \left( \frac{\pi + 2\mu \pi}{\nu} \right) \qquad \mu =0,1, \ldots , \nu -1 \end{align*} Let after
κ
\kappa
κ
(where
κ
\kappa
κ
∈
\in
∈
N
\mathbb{N}
N
), successive applications of
ϕ
\phi
ϕ
to the element
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
(\omega_0, \omega_1, \ldots , \omega_{\nu-1} )
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
, we obtain the element \begin{align*} \phi ^{(\kappa)} \left( \omega_0, \omega_1, \ldots , \omega_{\nu-1} \right) =\left( Z_{\kappa 1}, Z_{\kappa 2}, \ldots , Z_{\kappa \nu } \right) \end{align*} Determine[*] the values of
ν
\nu
ν
for which all coordinates of
ϕ
(
κ
)
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
\phi ^{(\kappa)} \left( \omega_0, \omega_1, \ldots , \omega_{\nu-1} \right)
ϕ
(
κ
)
(
ω
0
,
ω
1
,
…
,
ω
ν
−
1
)
have measures less than or equal to
1
1
1
[*] for
ν
=
4
\nu =4
ν
=
4
, the minimal value of
κ
∈
N
\kappa \in \mathbb{N}
κ
∈
N
, for which \begin{align*} \mid Z_{\kappa i} \mid \geq 2^{100} \qquad \qquad 1 \le i \le 4 \end{align*}