Find f and x so that the equality holds
Source: Balkan MO ShortList 2008 A5
April 6, 2020
Problem Statement
Consider an integer , real numbers in satisfying
\begin{align*}a_1+a_2+\ldots +a_n=0 \end{align*}
and a function such
\begin{align*} \mid f(x)-f(y) \mid \le \mid x-y \mid \end{align*}
for every . Prove
\begin{align*} \left| f(x) - \frac{f(a_1) +f(a_2) + \ldots + f(a_n)}{n} \right| \le 1 \end{align*}
for every . For a given sequence , Find and so hat the equality holds.