MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
A3
A3
Part of
2008 Balkan MO Shortlist
Problems
(1)
Prove that there exists a B when there exists an A
Source: Balkan MO ShortList 2008 A3
4/6/2020
Let
(
a
m
)
(a_m)
(
a
m
)
be a sequence satisfying
a
n
≥
0
a_n \geq 0
a
n
≥
0
,
n
=
0
,
1
,
2
,
…
n=0,1,2,\ldots
n
=
0
,
1
,
2
,
…
Suppose there exists
A
>
0
A >0
A
>
0
,
a
m
−
a
m
+
1
a_m - a_{m+1}
a
m
−
a
m
+
1
≥
A
a
m
2
\geq A a_m ^2
≥
A
a
m
2
for all
m
≥
0
m \geq 0
m
≥
0
. Prove that there exists
B
>
0
B>0
B
>
0
such that \begin{align*} a_n \le \frac{B}{n} \qquad \qquad \text{for }1 \le n \end{align*}