MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2008 Balkan MO Shortlist
A6
A6
Part of
2008 Balkan MO Shortlist
Problems
(1)
Inequality on three variables
Source: Balkan MO ShortList 2008 A6
4/6/2020
Prove that if
x
,
y
,
z
∈
R
+
x,y,z \in \mathbb{R}^+
x
,
y
,
z
∈
R
+
such that
x
y
,
y
z
,
z
x
xy,yz,zx
x
y
,
yz
,
z
x
are sidelengths of a triangle and
k
k
k
∈
\in
∈
[
−
1
,
1
]
[-1,1]
[
−
1
,
1
]
, then \begin{align*} \sum \frac{\sqrt{xy}}{\sqrt{xz+yz+kxy}} \geq 2 \sqrt{1-k} \end{align*} Determine the equality condition too.