MathDB
Hard Inequality

Source: 2009 József Wildt International Mathematical Competition

4/15/2020
Let aa, bb, cc be positive real numbers such that a+b+c=1a + b + c = 1. Prove that (1+ab+c)1abc(1+bc+a)1bca(1+ca+b)1cab364\sqrt[3]{\left (\frac{1+a}{b+c}\right )^{\frac{1-a}{bc}}\left (\frac{1+b}{c+a}\right )^{\frac{1-b}{ca}}\left (\frac{1+c}{a+b}\right )^{\frac{1-c}{ab}}} \geq 64
inequalities
Find the area of the set

Source: 2009 József Wildt International Mathematical Competition

4/15/2020
Find the area of the set A={(x,y)  1xe, 0yf(x)}A = \{(x, y)\ |\ 1 \leq x \leq e,\ 0 \leq y \leq f (x)\}, where \begin{tabular}{ c| c c c c |} &1 & 1& 1 & 1\\ f(x)f(x)=& lnx\ln x & 2lnx\ln x & 3lnx\ln x & 4lnx\ln x \\ &(lnx)2{(\ln x)}^2 & 4(lnx)24{(\ln x)}^2 & 9(lnx)29{(\ln x)}^2 & 16(lnx)216{(\ln x)}^2\\ &(lnx)3{(\ln x)}^3 & 8(lnx)38{(\ln x)}^3 &27(lnx)3 27{(\ln x)}^3 &64(lnx)3 64{(\ln x)}^3 \end{tabular}
algebra
Prove this hard inequality on triangles

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
Let a triangle ABC\triangle ABC and the real numbers xx, yy, z>0z>0. Prove that xncosA2+yncosB2+zncosC2(yz)n2sinA+(zx)n2sinB+(xy)n2sinCx^n\cos\frac{A}{2}+y^n\cos\frac{B}{2}+z^n\cos\frac{C}{2}\geq (yz)^{\frac{n}{2}}\sin A +(zx)^{\frac{n}{2}}\sin B +(xy)^{\frac{n}{2}}\sin C
trigonometryinequalities
Find all such numbers

Source: 2009 József Wildt International Mathematical Competition

4/15/2020
Let Φ\Phi and Ψ\Psi denote the Euler totient and Dedekind‘s totient respectively. Determine all nn such that Φ(n)\Phi(n) divides n+Ψ(n)n +\Psi (n).
number theory
Problem on euler's totient fumction

Source: 2009 József Wildt International Mathematical Competition

4/15/2020
Let Φ\Phi denote the Euler totient function. Prove that for infinitely many kk we have Φ(2k+1)<2k1\Phi (2^k+1) < 2^{k-1} and that for infinitely many mm one has Φ(2m+1)>2m1\Phi (2^m+1) > 2^{m-1}
number theorytotient functionfunction
Prove that this does not have any integer solutions

Source: 2009 Jozsef Wildt International Mathematical Competition

4/15/2020
Let p1p_1, p2p_2 be two odd prime numbers and α\alpha , nn be positive integers with α>1\alpha >1, n>1n>1. Prove that if the equation (p212)p1+(p2+12)p1=αn\left (\frac{p_2 -1}{2} \right )^{p_1} + \left (\frac{p_2 +1}{2} \right )^{p_1} = \alpha^n does not have integer solutions for both p1=p2p_1 =p_2 and p1p2p_1 \neq p_2.
number theoryprime numbers
Problem related to partitions

Source: 2009 J&oacute;zsef Wildt International Mathematical Competition

4/15/2020
Prove thatp(n)=2+(p(1)++p([n2]+χ1(n))+(p2(n)++p[n2]1(n)))p (n)= 2+ \left (p (1) + \cdots + p\left ( \left [\frac {n}{2} \right ] + \chi_1 (n)\right ) + \left (p'_2(n) + \cdots + p' _{ \left [\frac {n}{2} \right ] - 1}(n)\right )\right )for every nNn \in \mathbb {N} with n>2n>2 where χ\chi denotes the principal character Dirichlet modulo 2, i.e.χ1(n)={1if (n,2)=10if (n,2)>1 \chi _1 (n) = \begin{cases} 1 & \text{if } (n,2)=1 \\ 0 &\text{if } (n,2)>1 \end{cases} with p(n)p (n) we denote number of possible partitions of nn and pm(n)p' _m(n) we denote the number of partitions of nn in exactly mm sumands.
number theorypartitionsfunctions
Prove this integration inequality

Source: 2009 Jozsef Wildt International Mathematical Competition

4/17/2020
If 0<a<b0<a<b then ab(x2(a+b2)2)lnxalnxb(x2+a2)(x2+b2)dx>0\int \limits_a^b \frac{\left (x^2-\left (\frac{a+b}{2} \right )^2\right )\ln \frac{x}{a} \ln \frac{x}{b}}{(x^2+a^2)(x^2+b^2)} dx > 0
integrationlogarithmsinequalitiescalculus
Prove this combinatorial formula

Source: 2009 J&oacute;zsef Wildt International Mathematical Competition

4/17/2020
If n,p,qN,p<qn,p,q \in \mathbb{N}, p<q then ((p+q)nn)k=0n(1)k(nk)((p+q1)npnk)=((p+q)npn)k=0[n2](1)k(pnk)((qp)nn2k){{(p+q)n}\choose{n}} \sum \limits_{k=0}^n (-1)^k {{n}\choose{k}} {{(p+q-1)n}\choose{pn-k}}= {{(p+q)n}\choose{pn}} \sum \limits_{k=0}^{\left [\frac{n}{2} \right ]} (-1)^k {{pn}\choose{k}} {{(q-p)n}\choose{n-2k}}
combinatoricsalgebra
Find a real set on which this series is convergent

Source: 2009 J&amp;oacute;zsef Wildt International Math Competition

4/17/2020
Let the series s(n,x)=k=0n(1x)(12x)(13x)(1nx)n!s(n,x)=\sum \limits_{k= 0}^n \frac{(1-x)(1-2x)(1-3x)\cdots(1-nx)}{n!} Find a real set on which this series is convergent, and then compute its sum. Find also lim(n,x)(,0)s(n,x)\lim \limits_{(n,x)\to (\infty ,0)} s(n,x)
limitsseries
Find all real numbers m

Source: 2009 Jozsef Wildt International Math Competition

4/17/2020
Find all real numbers mm such that 1m2m{x  m2x4+3mx3+2x2+x=1  xR}\frac{1-m}{2m} \in \{x\ |\ m^2x^4+3mx^3+2x^2+x=1\ \forall \ x\in \mathbb{R} \}
Setsnumber theory
Good functional and set problem

Source: 2009 Jozsef Wildt International Math Competition

4/17/2020
Let consider the following function set F={f  f:{1, 2, , n}{1, 2, , n}}F=\{f\ |\ f:\{1,\ 2,\ \cdots,\ n\}\to \{1,\ 2,\ \cdots,\ n\} \}
[*] Find F|F| [*] For n=2kn=2k prove that F<e(4k)k|F|< e{(4k)}^{k} [*] Find nn, if F=540|F|=540 and n=2kn=2k
Setsfunction
Find all functions

Source: 2009 Jozsef Wildt International Math Competition

4/17/2020
Find all functions f:(0,+)Q(0,+)Qf: (0, +\infty)\cap\mathbb{Q}\to (0, +\infty)\cap\mathbb{Q} satisfying thefollowing conditions:
[*] f(ax)(f(x))af(ax) \leq (f(x))^a, for every x(0,+)Qx\in (0, +\infty)\cap\mathbb{Q} and a(0,1)Qa \in (0, 1)\cap\mathbb{Q} [*] f(x+y)f(x)f(y)f(x+y) \leq f(x)f(y), for every x,y(0,+)Qx,y\in (0, +\infty)\cap\mathbb{Q}
functionfunctional equation
Prove this inequality

Source: 2009 Jozsef Wildt International Math Competition

4/27/2020
If xkRx_k \in \mathbb{R} (k=1,2,,nk=1, 2, \cdots , n) and mNm \in \mathbb{N} then
[*] cyc(x12x1x2+x22)m3mk=1nxk2m\sum \limits_{cyc} \left (x_1^2 -x_1x_2+x_2^2 \right )^m \leq 3^m \sum \limits_{k=1}^n x_k^{2m} [*] cyc(x12x1x2+x22)m(3mn)m(k=1nxk2m)n\prod \limits_{cyc} \left (x_1^2 -x_1x_2+x_2^2 \right )^m \leq \left (\frac{3^m}{n}\right )^m \left (\sum \limits_{k=1}^n x_k^{2m}\right )^n
inequalities
Prove this inequality

Source: 2009 Jozsef Wildt International Math Competition

4/22/2020
If ak>0a_k >0 [ k=k=1, 2, \cdots, nn], then prove the following inequality (k=1nak5)41n(2n1)5(1i<jnai2aj2)5\left (\sum \limits_{k=1}^n a_k^5 \right )^4 \geq \frac{1}{n} \left (\frac{2}{n-1} \right )^5 \left (\sum \limits_{1\leq i<j\leq n} a_i^2a_j^2 \right )^5
inequalities
Prove this integral inequality

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
If the function f:[0,1](0.+)f:[0,1]\to (0.+\infty) is increasing and continuous, then for every a0a\geq 0 the following inequality holds: 01xa+1f(x)dxa+1a+201xaf(x)dx\int \limits_0^1 \frac{x^{a+1}}{f(x)}dx \leq \frac{a+1}{a+2} \int \limits_0^1 \frac{x^{a}}{f(x)}dx
integrationinequalitiescalculus
Prove this inequality on number of divisors of a number

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
Prove that k=1n1d(k)>n+11\sum \limits_{k=1}^n \frac{1}{d(k)}>\sqrt{n+1}-1 For every n1n\geq 1, d(n)d(n) is the number of divisors of nn
number theoryinequalities
Prove this inequality on two functions

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
If aa, bb, c>0c>0 and abc=1abc=1, α=max{a,b,c}\alpha = max\{a,b,c\}; f,g:(0,+)Rf,g : (0, +\infty )\to \mathbb{R}, where f(x)=2(x+1)2xf(x)=\frac{2(x+1)^2}{x} and g(x)=(x+1)(1x+1)2g(x)= (x+1)\left (\frac{1}{\sqrt{x}}+1\right )^2, then (a+1)(b+1)(c+1)min{{f(x),g(x)}  x{a,b,c}\{α}}(a+1)(b+1)(c+1)\geq min\{ \{f(x),g(x) \}\ |\ x\in\{a,b,c\} \backslash \{ \alpha \}\}
functioninequalities
prove this cyclic inequality

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
If aa, bb, c>0c>0 and abc=1abc=1, then cyca+b+cna2n+3+b2n+3+aban+1+bn+1+cn+1\sum \limits^{cyc} \frac{a+b+c^n}{a^{2n+3}+b^{2n+3}+ab} \leq a^{n+1}+b^{n+1}+c^{n+1} for all nNn\in \mathbb{N}
inequalities
Prove this inequality

Source: 2009 Jozsef Wildt International Math Competition

4/26/2020
If xk>0x_k >0 (k=1,2,,nk=1, 2, \cdots , n), then k=1n(xk1+x12+x22++xk2)2k=1nxk21+k=1nxk2\sum \limits_{k=1}^n \left ( \frac{x_k}{1+x_1^2+x_2^2+\cdots +x_k^2} \right )^2 \leq \frac{\sum \limits_{k=1}^n x_k^2}{1+\sum \limits_{k=1}^n x_k^2}
inequalities
Prove this statement about riemann zeta function

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
If ζ\zeta denote the Riemann Zeta Function, and s>1s>1 then k=111+ksζ(s)1+ζ(s)\sum \limits_{k=1}^{\infty} \frac{1}{1+k^s}\geq \frac{\zeta (s)}{1+\zeta (s)}
functionRiemann Zeta Function
Prove this inequality

Source: 2009 Jozse Wildt International Mathematical Competition

4/26/2020
If ai>0a_i >0 (i=1,2,,ni=1, 2, \cdots , n), then (a1a2)k+(a2a3)k++(ana1)ka1a2+a2a3++ana1\left (\frac{a_1}{a_2} \right )^k + \left (\frac{a_2}{a_3} \right )^k + \cdots + \left (\frac{a_n}{a_1} \right )^k \geq \frac{a_1}{a_2}+\frac{a_2}{a_3}+\cdots + \frac{a_n}{a_1} for all kNk\in \mathbb{N}
inequalities
Prove this trigonometric equation

Source: 2009 Jozsef Wildt International Mathematical Competition

4/26/2020
If xR\{kπ2  kZ}x \in \mathbb{R}\backslash \left \{\frac{k\pi}{2}\ |\ k\in \mathbb{Z} \right \}, then (0j<knsin(2(j+k)x))2+(0j<kncos(2(j+k)x))2=sin2nxsin2(n+1)xsin2xsin22x\left (\sum \limits_{0\leq j<k\leq n} \sin (2(j+k)x)\right )^2 + \left (\sum \limits_{0\leq j<k\leq n} \cos (2(j+k)x)\right )^2 = \frac{\sin ^2 nx \sin ^2 (n+1)x}{\sin ^2x \sin^22x}
trigonometry
Prove this inequality on perfect number

Source: 2009 Jozsef Wildt International Math Competition

4/27/2020
Let aa, nn be positive integers such that ana^n is a perfect number. Prove that anμ>μ2a^{\frac{n}{\mu}}> \frac{\mu}{2} where μ\mu denotes the number of distinct prime divisors of ana^n
number theoryinequalitiesPerfect Numbers
Prove this inequality for any point in the plane of triangle

Source: 2009 Jozsef Wildt International Math Competition

4/27/2020
If KK, LL, MM denote the midpoints of the sides ABAB, BCBC, CACA in triangle ABC\triangle ABC, then for all PP in the plane of triangle ABC\triangle ABC, we have ABPK+BCPL+CAPMABBCCA4PKPLPM\frac{AB}{PK}+\frac{BC}{PL}+\frac{CA}{PM} \geq \frac{AB\cdot BC \cdot CA}{4\cdot PK\cdot PL\cdot PM}
Trianglegeometryinequalities