MathDB
Prove this hard inequality on triangles

Source: 2009 Jozsef Wildt International Mathematical Competition

April 26, 2020
trigonometryinequalities

Problem Statement

Let a triangle ABC\triangle ABC and the real numbers xx, yy, z>0z>0. Prove that xncosA2+yncosB2+zncosC2(yz)n2sinA+(zx)n2sinB+(xy)n2sinCx^n\cos\frac{A}{2}+y^n\cos\frac{B}{2}+z^n\cos\frac{C}{2}\geq (yz)^{\frac{n}{2}}\sin A +(zx)^{\frac{n}{2}}\sin B +(xy)^{\frac{n}{2}}\sin C