MathDB
Problem related to partitions

Source: 2009 József Wildt International Mathematical Competition

April 15, 2020
number theorypartitionsfunctions

Problem Statement

Prove thatp(n)=2+(p(1)++p([n2]+χ1(n))+(p2(n)++p[n2]1(n)))p (n)= 2+ \left (p (1) + \cdots + p\left ( \left [\frac {n}{2} \right ] + \chi_1 (n)\right ) + \left (p'_2(n) + \cdots + p' _{ \left [\frac {n}{2} \right ] - 1}(n)\right )\right )for every nNn \in \mathbb {N} with n>2n>2 where χ\chi denotes the principal character Dirichlet modulo 2, i.e.χ1(n)={1if (n,2)=10if (n,2)>1 \chi _1 (n) = \begin{cases} 1 & \text{if } (n,2)=1 \\ 0 &\text{if } (n,2)>1 \end{cases} with p(n)p (n) we denote number of possible partitions of nn and pm(n)p' _m(n) we denote the number of partitions of nn in exactly mm sumands.