MathDB
Prove this inequality

Source: 2009 Jozsef Wildt International Math Competition

April 26, 2020
inequalities

Problem Statement

If xk>0x_k >0 (k=1,2,,nk=1, 2, \cdots , n), then k=1n(xk1+x12+x22++xk2)2k=1nxk21+k=1nxk2\sum \limits_{k=1}^n \left ( \frac{x_k}{1+x_1^2+x_2^2+\cdots +x_k^2} \right )^2 \leq \frac{\sum \limits_{k=1}^n x_k^2}{1+\sum \limits_{k=1}^n x_k^2}