MathDB
Prove this inequality

Source: 2009 Jozse Wildt International Mathematical Competition

April 26, 2020
inequalities

Problem Statement

If ai>0a_i >0 (i=1,2,,ni=1, 2, \cdots , n), then (a1a2)k+(a2a3)k++(ana1)ka1a2+a2a3++ana1\left (\frac{a_1}{a_2} \right )^k + \left (\frac{a_2}{a_3} \right )^k + \cdots + \left (\frac{a_n}{a_1} \right )^k \geq \frac{a_1}{a_2}+\frac{a_2}{a_3}+\cdots + \frac{a_n}{a_1} for all kNk\in \mathbb{N}