MathDB
Prove this statement about riemann zeta function

Source: 2009 Jozsef Wildt International Mathematical Competition

April 26, 2020
functionRiemann Zeta Function

Problem Statement

If ζ\zeta denote the Riemann Zeta Function, and s>1s>1 then k=111+ksζ(s)1+ζ(s)\sum \limits_{k=1}^{\infty} \frac{1}{1+k^s}\geq \frac{\zeta (s)}{1+\zeta (s)}