MathDB
Prove this trigonometric equation

Source: 2009 Jozsef Wildt International Mathematical Competition

April 26, 2020
trigonometry

Problem Statement

If xR\{kπ2  kZ}x \in \mathbb{R}\backslash \left \{\frac{k\pi}{2}\ |\ k\in \mathbb{Z} \right \}, then (0j<knsin(2(j+k)x))2+(0j<kncos(2(j+k)x))2=sin2nxsin2(n+1)xsin2xsin22x\left (\sum \limits_{0\leq j<k\leq n} \sin (2(j+k)x)\right )^2 + \left (\sum \limits_{0\leq j<k\leq n} \cos (2(j+k)x)\right )^2 = \frac{\sin ^2 nx \sin ^2 (n+1)x}{\sin ^2x \sin^22x}