Subcontests
(35)Find CD
[asy]
size(2.5inch);
pair A = (-2,0), B = 2dir(150), D = (2,0), C;
draw(A..(0,2)..D--cycle);
C = intersectionpoint(A..(0,2)..D,Circle(B,arclength(A--B)));
draw(A--B--C--D--cycle);
label("A",A,W);
label("B",B,NW);
label("C",C,N);
label("D",D,E);
label("4",A--D,S);
label("1",A--B,E);
label("1",B--C,SE);
//Credit to chezbgone2 for the diagram[/asy]Quadrilateral ABCD is inscribed in a circle with side AD, a diameter of length 4. If sides AB and BC each have length 1, then side CD has length<spanclass=′latex−bold′>(A)</span>27<spanclass=′latex−bold′>(B)</span>252<spanclass=′latex−bold′>(C)</span>11<spanclass=′latex−bold′>(D)</span>13<spanclass=′latex−bold′>(E)</span>23 Fractional Transformation of x
Given the linear fractional transformation of x into f1(x)=x+12x−1. Define fn+1(x)=f1(fn(x)) for n=1,2,3,⋯. Assuming that f35(x)=f5(x), it follows that f28(x) is equal to<spanclass=′latex−bold′>(A)</span>x<spanclass=′latex−bold′>(B)</span>x1<spanclass=′latex−bold′>(C)</span>xx−1<spanclass=′latex−bold′>(D)</span>1−x1<spanclass=′latex−bold′>(E)</span>None of these Progression 10^(n/11)
Given the progression 10111,10112,10113,10114,…,1011n. The least positive integer n such that the product of the first n terms of the progression exceeds 100,000 is<spanclass=′latex−bold′>(A)</span>7<spanclass=′latex−bold′>(B)</span>8<spanclass=′latex−bold′>(C)</span>9<spanclass=′latex−bold′>(D)</span>10<spanclass=′latex−bold′>(E)</span>11 Find BE:EC
[asy]
size(2.5inch);
pair A, B, C, E, F, G;
A = (0,3);
B = (-1,0);
C = (3,0);
E = (0,0);
F = (1,2);
G = intersectionpoint(B--F,A--E);
draw(A--B--C--cycle);
draw(A--E);
draw(B--F);
label("A",A,N);
label("B",B,W);
label("C",C,dir(0));
label("E",E,S);
label("F",F,NE);
label("G",G,SE);
//Credit to chezbgone2 for the diagram[/asy]In triangle ABC, point F divides side AC in the ratio 1:2. Let E be the point of intersection of side BC and AG where G is the midpoints of BF. The point E divides side BC in the ratio<spanclass=′latex−bold′>(A)</span>1:4<spanclass=′latex−bold′>(B)</span>1:3<spanclass=′latex−bold′>(C)</span>2:5<spanclass=′latex−bold′>(D)</span>4:11<spanclass=′latex−bold′>(E)</span>3:8 Elements in Pascal's Triangle
[asy]
label("1",(0,0),S);
label("1",(-1,-1),S);
label("1",(-2,-2),S);
label("1",(-3,-3),S);
label("1",(-4,-4),S);
label("1",(1,-1),S);
label("1",(2,-2),S);
label("1",(3,-3),S);
label("1",(4,-4),S);
label("2",(0,-2),S);
label("3",(-1,-3),S);
label("3",(1,-3),S);
label("4",(-2,-4),S);
label("4",(2,-4),S);
label("6",(0,-4),S);
label("etc.",(0,-5),S);
//Credit to chezbgone2 for the diagram[/asy]Pascal's triangle is an array of positive integers(See figure), in which the first row is 1, the second row is two 1's, each row begins and ends with 1, and the kth number in any row when it is not 1, is the sum of the kth and (k−1)th numbers in the immediately preceding row. The quotient of the number of numbers in the first n rows which are not 1's and the number of 1's is<spanclass=′latex−bold′>(A)</span>2n−1n2−n<spanclass=′latex−bold′>(B)</span>4n−2n2−n<spanclass=′latex−bold′>(C)</span>2n−1n2−2n<spanclass=′latex−bold′>(D)</span>4n−2n2−3n+2<spanclass=′latex−bold′>(E)</span>None of these Find the two numbers
The number (248−1) is exactly divisible by two numbers between 60 and 70. These numbers are<spanclass=′latex−bold′>(A)</span>61,63<spanclass=′latex−bold′>(B)</span>61,65<spanclass=′latex−bold′>(C)</span>63,65<spanclass=′latex−bold′>(D)</span>63,67<spanclass=′latex−bold′>(E)</span>67,69 Find the sum of the angles
Points A,B,Q,D, and C lie on the circle shown and the measures of arcs BQ and QD are 42∘ and 38∘ respectively. The sum of the measures of angles P and Q is<spanclass=′latex−bold′>(A)</span>80∘<spanclass=′latex−bold′>(B)</span>62∘<spanclass=′latex−bold′>(C)</span>40∘<spanclass=′latex−bold′>(D)</span>46∘<spanclass=′latex−bold′>(E)</span>None of these[asy]
size(3inch);
draw(Circle((1,0),1));
pair A, B, C, D, P, Q;
P = (-2,0);
B=(sqrt(2)/2+1,sqrt(2)/2);
D=(sqrt(2)/2+1,-sqrt(2)/2);
Q = (2,0);
A = intersectionpoints(Circle((1,0),1),B--P)[1];
C = intersectionpoints(Circle((1,0),1),D--P)[0];
draw(B--P--D);
draw(A--Q--C);
label("A",A,NW);
label("B",B,NE);
label("C",C,SW);
label("D",D,SE);
label("P",P,W);
label("Q",Q,E);
//Credit to chezbgone2 for the diagram[/asy] Find the x-coordinate
If the point (x,−4) lies on the straight line joining the points (0,8) and (−4,0) in the xy-plane, then x is equal to<spanclass=′latex−bold′>(A)</span>−2<spanclass=′latex−bold′>(B)</span>2<spanclass=′latex−bold′>(C)</span>−8<spanclass=′latex−bold′>(D)</span>6<spanclass=′latex−bold′>(E)</span>−6