MathDB

1971 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(35)

Elements in Pascal's Triangle

[asy] label("11",(0,0),S); label("11",(-1,-1),S); label("11",(-2,-2),S); label("11",(-3,-3),S); label("11",(-4,-4),S); label("11",(1,-1),S); label("11",(2,-2),S); label("11",(3,-3),S); label("11",(4,-4),S); label("22",(0,-2),S); label("33",(-1,-3),S); label("33",(1,-3),S); label("44",(-2,-4),S); label("44",(2,-4),S); label("66",(0,-4),S); label("etc.",(0,-5),S); //Credit to chezbgone2 for the diagram[/asy]
Pascal's triangle is an array of positive integers(See figure), in which the first row is 11, the second row is two 11's, each row begins and ends with 11, and the kthk^\text{th} number in any row when it is not 11, is the sum of the kthk^\text{th} and (k1)th(k-1)^\text{th} numbers in the immediately preceding row. The quotient of the number of numbers in the first nn rows which are not 11's and the number of 11's is
<spanclass=latexbold>(A)</span>n2n2n1<spanclass=latexbold>(B)</span>n2n4n2<spanclass=latexbold>(C)</span>n22n2n1<spanclass=latexbold>(D)</span>n23n+24n2<spanclass=latexbold>(E)</span>None of these<span class='latex-bold'>(A) </span>\dfrac{n^2-n}{2n-1}\qquad<span class='latex-bold'>(B) </span>\dfrac{n^2-n}{4n-2}\qquad<span class='latex-bold'>(C) </span>\dfrac{n^2-2n}{2n-1}\qquad<span class='latex-bold'>(D) </span>\dfrac{n^2-3n+2}{4n-2}\qquad <span class='latex-bold'>(E) </span>\text{None of these}
6
1

* the binary operation

Let \ast be the symbol denoting the binary operation on the set SS of all non-zero real numbers as follows: For any two numbers aa and bb of SS, ab=2aba\ast b=2ab. Then the one of the following statements which is not true, is
<spanclass=latexbold>(A)</span> is commutative over S<spanclass=latexbold>(B)</span> is associative over S<span class='latex-bold'>(A) </span>\ast\text{ is commutative over }S \qquad<span class='latex-bold'>(B) </span>\ast\text{ is associative over }S\qquad
<spanclass=latexbold>(C)</span>12 is an identity element for  in S<spanclass=latexbold>(D)</span>Every element of S has an inverse for <span class='latex-bold'>(C) </span>\frac{1}{2}\text{ is an identity element for }\ast\text{ in }S\qquad<span class='latex-bold'>(D) </span>\text{Every element of }S\text{ has an inverse for }\ast\qquad
<spanclass=latexbold>(E)</span>12a is an inverse for  of the element a of S<span class='latex-bold'>(E) </span>\dfrac{1}{2a}\text{ is an inverse for }\ast\text{ of the element }a\text{ of }S