MathDB
Elements in Pascal's Triangle

Source: 1971 AHSME Problem 24

April 22, 2014
Pascal's TriangleAMC

Problem Statement

[asy] label("11",(0,0),S); label("11",(-1,-1),S); label("11",(-2,-2),S); label("11",(-3,-3),S); label("11",(-4,-4),S); label("11",(1,-1),S); label("11",(2,-2),S); label("11",(3,-3),S); label("11",(4,-4),S); label("22",(0,-2),S); label("33",(-1,-3),S); label("33",(1,-3),S); label("44",(-2,-4),S); label("44",(2,-4),S); label("66",(0,-4),S); label("etc.",(0,-5),S); //Credit to chezbgone2 for the diagram[/asy]
Pascal's triangle is an array of positive integers(See figure), in which the first row is 11, the second row is two 11's, each row begins and ends with 11, and the kthk^\text{th} number in any row when it is not 11, is the sum of the kthk^\text{th} and (k1)th(k-1)^\text{th} numbers in the immediately preceding row. The quotient of the number of numbers in the first nn rows which are not 11's and the number of 11's is
<spanclass=latexbold>(A)</span>n2n2n1<spanclass=latexbold>(B)</span>n2n4n2<spanclass=latexbold>(C)</span>n22n2n1<spanclass=latexbold>(D)</span>n23n+24n2<spanclass=latexbold>(E)</span>None of these<span class='latex-bold'>(A) </span>\dfrac{n^2-n}{2n-1}\qquad<span class='latex-bold'>(B) </span>\dfrac{n^2-n}{4n-2}\qquad<span class='latex-bold'>(C) </span>\dfrac{n^2-2n}{2n-1}\qquad<span class='latex-bold'>(D) </span>\dfrac{n^2-3n+2}{4n-2}\qquad <span class='latex-bold'>(E) </span>\text{None of these}