Given the linear fractional transformation of x into f1(x)=x+12x−1. Define fn+1(x)=f1(fn(x)) for n=1,2,3,⋯. Assuming that f35(x)=f5(x), it follows that f28(x) is equal to<spanclass=′latex−bold′>(A)</span>x<spanclass=′latex−bold′>(B)</span>x1<spanclass=′latex−bold′>(C)</span>xx−1<spanclass=′latex−bold′>(D)</span>1−x1<spanclass=′latex−bold′>(E)</span>None of these