Given the progression 10111,10112,10113,10114,…,1011n. The least positive integer n such that the product of the first n terms of the progression exceeds 100,000 is<spanclass=′latex−bold′>(A)</span>7<spanclass=′latex−bold′>(B)</span>8<spanclass=′latex−bold′>(C)</span>9<spanclass=′latex−bold′>(D)</span>10<spanclass=′latex−bold′>(E)</span>11