MathDB

1959 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(50)

Making committees

A club with xx members is organized into four committees in accordance with these two rules: (1) Each member belongs to two and only two committees \text{(1)}\ \text{Each member belongs to two and only two committees}\qquad (2) Each pair of committees has one and only one member in common\text{(2)}\ \text{Each pair of committees has one and only one member in common} Then xx: <spanclass=latexbold>(A)</span> cannont be determined<span class='latex-bold'>(A)</span> \ \text{cannont be determined} \qquad <spanclass=latexbold>(B)</span> has a single value between 8 and 16<span class='latex-bold'>(B)</span> \ \text{has a single value between 8 and 16} \qquad <spanclass=latexbold>(C)</span> has two values between 8 and 16<span class='latex-bold'>(C)</span> \ \text{has two values between 8 and 16} \qquad <spanclass=latexbold>(D)</span> has a single value between 4 and 8<span class='latex-bold'>(D)</span> \ \text{has a single value between 4 and 8} \qquad <spanclass=latexbold>(E)</span> has two values between 4 and 8<span class='latex-bold'>(E)</span> \ \text{has two values between 4 and 8} \qquad

Logical statements

Assume that the following three statements are true: II. All freshmen are human. IIII. All students are human. IIIIII. Some students think. Given the following four statements: <spanclass=latexbold>(1)</span> All freshmen are students. <span class='latex-bold'>(1)</span>\ \text{All freshmen are students.}\qquad <spanclass=latexbold>(2)</span> Some humans think.<span class='latex-bold'>(2)</span>\ \text{Some humans think.}\qquad <spanclass=latexbold>(3)</span> No freshmen think.<span class='latex-bold'>(3)</span>\ \text{No freshmen think.}\qquad <spanclass=latexbold>(4)</span> Some humans who think are not students.<span class='latex-bold'>(4)</span>\ \text{Some humans who think are not students.} Those which are logical consequences of I,II, and III are: <spanclass=latexbold>(A)</span> 2<spanclass=latexbold>(B)</span> 4<spanclass=latexbold>(C)</span> 2,3<spanclass=latexbold>(D)</span> 2,4<spanclass=latexbold>(E)</span> 1,2 <span class='latex-bold'>(A)</span>\ 2\qquad<span class='latex-bold'>(B)</span>\ 4\qquad<span class='latex-bold'>(C)</span>\ 2,3\qquad<span class='latex-bold'>(D)</span>\ 2,4\qquad<span class='latex-bold'>(E)</span>\ 1,2

gcd(a,b,c)lcm(a,b,c)

Given three positive integers a,b,a,b, and cc. Their greatest common divisor is DD; their least common multiple is mm. Then, which two of the following statements are true? (1) the product MD cannot be less than abc \text{(1)}\ \text{the product MD cannot be less than abc} \qquad (2) the product MD cannot be greater than abc\text{(2)}\ \text{the product MD cannot be greater than abc}\qquad (3) MD equals abc if and only if a,b,c are each prime\text{(3)}\ \text{MD equals abc if and only if a,b,c are each prime}\qquad (4) MD equals abc if and only if a,b,c are each relatively prime in pairs\text{(4)}\ \text{MD equals abc if and only if a,b,c are each relatively prime in pairs}  (This means: no two have a common factor greater than 1.)\text{ (This means: no two have a common factor greater than 1.)} <spanclass=latexbold>(A)</span> 1,2<spanclass=latexbold>(B)</span> 1,3<spanclass=latexbold>(C)</span> 1,4<spanclass=latexbold>(D)</span> 2,3<spanclass=latexbold>(E)</span> 2,4 <span class='latex-bold'>(A)</span>\ 1,2 \qquad<span class='latex-bold'>(B)</span>\ 1,3\qquad<span class='latex-bold'>(C)</span>\ 1,4\qquad<span class='latex-bold'>(D)</span>\ 2,3\qquad<span class='latex-bold'>(E)</span>\ 2,4