Given the polynomial a0xn+a1xn−1+⋯+an−1x+an, where n is a positive integer or zero, and a0 is a positive integer. The remaining a's are integers or zero. Set h=n+a0+∣a1∣+∣a2∣+⋯+∣an∣. [See example 25 for the meaning of ∣x∣.] The number of polynomials with h=3 is:
<spanclass=′latex−bold′>(A)</span>3<spanclass=′latex−bold′>(B)</span>5<spanclass=′latex−bold′>(C)</span>6<spanclass=′latex−bold′>(D)</span>7<spanclass=′latex−bold′>(E)</span>9