MathDB
Triangle with medians

Source: 1959 AHSME Problem 40

August 14, 2013
AMCTriangle GeometrymediangeometryAMC 12

Problem Statement

In triangle ABCABC, BDBD is a median. CFCF intersects BDBD at EE so that BE=ED\overline{BE}=\overline{ED}. Point FF is on ABAB. Then, if BF=5\overline{BF}=5, BA\overline{BA} equals: <spanclass=latexbold>(A)</span> 10<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 15<spanclass=latexbold>(D)</span> 20<spanclass=latexbold>(E)</span> none of these <span class='latex-bold'>(A)</span>\ 10 \qquad<span class='latex-bold'>(B)</span>\ 12\qquad<span class='latex-bold'>(C)</span>\ 15\qquad<span class='latex-bold'>(D)</span>\ 20\qquad<span class='latex-bold'>(E)</span>\ \text{none of these}