MathDB

1950 AMC 12/AHSME

Part of AMC 12/AHSME

Subcontests

(50)

AHSME 1950- part 3

A triangle has a fixed base ABAB that is 22 inches long. The median from AA to side BCBC is 112 1\frac{1}{2} inches long and can have any position emanating from AA. The locus of the vertex CC of the triangle is:
<spanclass=latexbold>(A)</span> A straight line AB,112 inches from A<spanclass=latexbold>(B)</span> A circle with A as center and radius 2 inches<spanclass=latexbold>(C)</span> A circle with A as center and radius 3 inches<spanclass=latexbold>(D)</span> A circle with radius 3 inches and center 4 inches from B along BA<spanclass=latexbold>(E)</span> An ellipse with A as focus<span class='latex-bold'>(A)</span>\ \text{A straight line }AB,1\dfrac{1}{2}\text{ inches from }A \qquad\\ <span class='latex-bold'>(B)</span>\ \text{A circle with }A\text{ as center and radius }2\text{ inches} \qquad\\ <span class='latex-bold'>(C)</span>\ \text{A circle with }A\text{ as center and radius }3\text{ inches} \qquad\\ <span class='latex-bold'>(D)</span>\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA \qquad\\ <span class='latex-bold'>(E)</span>\ \text{An ellipse with }A\text{ as focus}

AHSME 1950- part 3

A point is selected at random inside an equilateral triangle. From this point perpendiculars are dropped to each side. The sum of these perpendiculars is:
<spanclass=latexbold>(A)</span> Least when the point is the center of gravity of the triangle<spanclass=latexbold>(B)</span> Greater than the altitude of the triangle<spanclass=latexbold>(C)</span> Equal to the altitude of the triangle<spanclass=latexbold>(D)</span> One-half the sum of the sides of the triangle<spanclass=latexbold>(E)</span> Greatest when the point is the center of gravity<span class='latex-bold'>(A)</span>\ \text{Least when the point is the center of gravity of the triangle}\qquad\\ <span class='latex-bold'>(B)</span>\ \text{Greater than the altitude of the triangle} \qquad\\ <span class='latex-bold'>(C)</span>\ \text{Equal to the altitude of the triangle}\qquad\\ <span class='latex-bold'>(D)</span>\ \text{One-half the sum of the sides of the triangle} \qquad\\ <span class='latex-bold'>(E)</span>\ \text{Greatest when the point is the center of gravity}

AHSME 1950- part 3

If the expression (acdb) \begin{pmatrix}a & c \\ d & b \end{pmatrix} has the value ab\minus{}cd for all values of a,b,ca, b, c and dd, then the equation (2x1xx)=3 \begin{pmatrix}2x & 1 \\ x & x \end{pmatrix} = 3:
<spanclass=latexbold>(A)</span> Is satisfied for only 1 value of x<spanclass=latexbold>(B)</span> Is satisified for only 2 values of x<spanclass=latexbold>(C)</span> Is satisified for no values of x<spanclass=latexbold>(D)</span> Is satisfied for an infinite number of values of x<spanclass=latexbold>(E)</span> None of these.<span class='latex-bold'>(A)</span>\ \text{Is satisfied for only 1 value of }x \qquad\\ <span class='latex-bold'>(B)</span>\ \text{Is satisified for only 2 values of }x \qquad\\ <span class='latex-bold'>(C)</span>\ \text{Is satisified for no values of }x \qquad\\ <span class='latex-bold'>(D)</span>\ \text{Is satisfied for an infinite number of values of }x \qquad\\ <span class='latex-bold'>(E)</span>\ \text{None of these.}