MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1950 AMC 12/AHSME
6
6
Part of
1950 AMC 12/AHSME
Problems
(1)
AHSME 1950- the original problems
Source:
7/17/2008
The values of y which will satisfy the equations 2x^2\plus{}6x\plus{}5y\plus{}1\equal{}0, 2x\plus{}y\plus{}3\equal{}0 may be found by solving:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
y
2
+
14
y
−
7
=
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
y
2
+
8
y
+
1
=
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
y
2
+
10
y
−
7
=
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
y
2
+
y
−
12
=
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None of these equations
<span class='latex-bold'>(A)</span>\ y^2+14y-7=0 \qquad <span class='latex-bold'>(B)</span>\ y^2+8y+1=0 \qquad <span class='latex-bold'>(C)</span>\ y^2+10y-7=0 \qquad <span class='latex-bold'>(D)</span>\ y^2+y-12=0 \qquad <span class='latex-bold'>(E)</span>\ \text{None of these equations}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
y
2
+
14
y
−
7
=
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
y
2
+
8
y
+
1
=
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
y
2
+
10
y
−
7
=
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
y
2
+
y
−
12
=
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None of these equations