MathDB
AHSME 1950- part 2

Source:

July 20, 2008

Problem Statement

When the circumference of a toy balloon is increased from 2020 inches to 2525 inches, the radius is increased by:
<spanclass=latexbold>(A)</span> 5 in<spanclass=latexbold>(B)</span> 212 in<spanclass=latexbold>(C)</span> 5π in<spanclass=latexbold>(D)</span> 52π in<spanclass=latexbold>(E)</span> π5 in<span class='latex-bold'>(A)</span>\ 5\text{ in} \qquad <span class='latex-bold'>(B)</span>\ 2\dfrac{1}{2}\text{ in} \qquad <span class='latex-bold'>(C)</span>\ \dfrac{5}{\pi}\text{ in} \qquad <span class='latex-bold'>(D)</span>\ \dfrac{5}{2\pi}\text{ in} \qquad <span class='latex-bold'>(E)</span>\ \dfrac{\pi}{5}\text{ in}