MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1950 AMC 12/AHSME
13
13
Part of
1950 AMC 12/AHSME
Problems
(1)
AHSME 1950- part 1
Source:
7/18/2008
The roots of (x^2\minus{}3x\plus{}2)(x)(x\minus{}4)\equal{}0 are:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
0
and
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
1
and
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
0
,
1
,
2
and
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
1
,
2
and
4
<span class='latex-bold'>(A)</span>\ 4\qquad <span class='latex-bold'>(B)</span>\ 0\text{ and }4 \qquad <span class='latex-bold'>(C)</span>\ 1\text{ and }2 \qquad <span class='latex-bold'>(D)</span>\ 0,1,2\text{ and }4\qquad <span class='latex-bold'>(E)</span>\ 1,2\text{ and }4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
0
and
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
1
and
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
0
,
1
,
2
and
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
1
,
2
and
4
quadratics