MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1950 AMC 12/AHSME
10
10
Part of
1950 AMC 12/AHSME
Problems
(1)
AHSME 1950- the original problems
Source:
7/17/2008
After rationalizing the numerator of \frac {\sqrt{3}\minus{}\sqrt{2}}{\sqrt{3}}, the denominator in simplest form is:
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
3
(
3
+
2
)
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
3
(
3
−
2
)
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
3
−
3
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
3
+
6
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None of these answers
<span class='latex-bold'>(A)</span>\ \sqrt{3}(\sqrt{3}+\sqrt{2}) \qquad <span class='latex-bold'>(B)</span>\ \sqrt{3}(\sqrt{3}-\sqrt{2}) \qquad <span class='latex-bold'>(C)</span>\ 3-\sqrt{3}\sqrt{2} \qquad\\ <span class='latex-bold'>(D)</span>\ 3+\sqrt6 \qquad <span class='latex-bold'>(E)</span>\ \text{None of these answers}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
3
(
3
+
2
)
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
3
(
3
−
2
)
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
3
−
3
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
3
+
6
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None of these answers