MathDB
AHSME 1950- part 3

Source:

July 20, 2008
conicsellipseratiotrigonometry

Problem Statement

A triangle has a fixed base ABAB that is 22 inches long. The median from AA to side BCBC is 112 1\frac{1}{2} inches long and can have any position emanating from AA. The locus of the vertex CC of the triangle is:
<spanclass=latexbold>(A)</span> A straight line AB,112 inches from A<spanclass=latexbold>(B)</span> A circle with A as center and radius 2 inches<spanclass=latexbold>(C)</span> A circle with A as center and radius 3 inches<spanclass=latexbold>(D)</span> A circle with radius 3 inches and center 4 inches from B along BA<spanclass=latexbold>(E)</span> An ellipse with A as focus<span class='latex-bold'>(A)</span>\ \text{A straight line }AB,1\dfrac{1}{2}\text{ inches from }A \qquad\\ <span class='latex-bold'>(B)</span>\ \text{A circle with }A\text{ as center and radius }2\text{ inches} \qquad\\ <span class='latex-bold'>(C)</span>\ \text{A circle with }A\text{ as center and radius }3\text{ inches} \qquad\\ <span class='latex-bold'>(D)</span>\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA \qquad\\ <span class='latex-bold'>(E)</span>\ \text{An ellipse with }A\text{ as focus}