MathDB

2004 AMC 10

Part of AMC 10

Subcontests

(25)

Problem: 2004 AMC 10 #21

Two distinct lines pass through the center of three concentric circles of radii 33, 22, and 11. The area of the shaded region in the diagram is 8/138/13 of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: π\pi radians is 180180 degrees.)
[asy] defaultpen(linewidth(0.8)); pair O=origin; fill(O--Arc(O, 2, 20, 160)--cycle, mediumgray); fill(O--Arc(O, 1, 20, 160)--cycle, white); fill(O--Arc(O, 2, 200, 340)--cycle, mediumgray); fill(O--Arc(O, 1, 200, 340)--cycle, white); fill(O--Arc(O, 3, 160, 200)--cycle, mediumgray); fill(O--Arc(O, 2, 160, 200)--cycle, white); fill(O--Arc(O, 1, 160, 200)--cycle, mediumgray); fill(O--Arc(O, 3, -20, 20)--cycle, mediumgray); fill(O--Arc(O, 2, -20, 20)--cycle, white); fill(O--Arc(O, 1, -20, 20)--cycle, mediumgray); draw(Circle(origin, 1));draw(Circle(origin, 2));draw(Circle(origin, 3)); draw(5*dir(200)--5*dir(20)^^5*dir(160)--5*dir(-20));[/asy]
<spanclass=latexbold>(A)</span>π8<spanclass=latexbold>(B)</span>π7<spanclass=latexbold>(C)</span>π6<spanclass=latexbold>(D)</span>π5<spanclass=latexbold>(E)</span>π4 <span class='latex-bold'>(A)</span> \frac{\pi}8\qquad <span class='latex-bold'>(B)</span>\frac{\pi}7\qquad <span class='latex-bold'>(C)</span>\frac{\pi}6\qquad <span class='latex-bold'>(D)</span>\frac{\pi}5\qquad <span class='latex-bold'>(E)</span>\frac{\pi}4

Problem: 2004 AMC 10 #19

A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet?
[asy] size(250);defaultpen(linewidth(0.8)); draw(ellipse(origin, 3, 1)); fill((3,0)--(3,2)--(-3,2)--(-3,0)--cycle, white); draw((3,0)--(3,16)^^(-3,0)--(-3,16)); draw((0, 15)--(3, 12)^^(0, 16)--(3, 13)); filldraw(ellipse((0, 16), 3, 1), white, black); draw((-3,11)--(3, 5)^^(-3,10)--(3, 4)); draw((-3,2)--(0,-1)^^(-3,1)--(-1,-0.89)); draw((0,-1)--(0,15), dashed); draw((3,-2)--(3,-4)^^(-3,-2)--(-3,-4)); draw((-7,0)--(-5,0)^^(-7,16)--(-5,16)); draw((3,-3)--(-3,-3), Arrows(6)); draw((-6,0)--(-6,16), Arrows(6)); draw((-2,9)--(-1,9), Arrows(3)); label("33", (-1.375,9.05), dir(260), fontsize(7)); label("AA", (0,15), N); label("BB", (0,-1), NE); label("3030", (0, -3), S); label("8080", (-6, 8), W);[/asy]
<spanclass=latexbold>(A)</span>  120<spanclass=latexbold>(B)</span>  180<spanclass=latexbold>(C)</span>  240<spanclass=latexbold>(D)</span>  360<spanclass=latexbold>(E)</span>  480 <span class='latex-bold'>(A)</span>\; 120\qquad <span class='latex-bold'>(B)</span>\; 180\qquad <span class='latex-bold'>(C)</span>\; 240\qquad <span class='latex-bold'>(D)</span>\; 360\qquad <span class='latex-bold'>(E)</span>\; 480

A Right Triangle Inside Another

In right triangle ACE \triangle ACE, we have AC \equal{} 12, CE \equal{} 16, and EA \equal{} 20. Points B B, D D, and F F are located on AC \overline{AC}, CE \overline{CE}, and EA \overline{EA}, respectively, so that AB \equal{} 3, CD \equal{} 4, and EF \equal{} 5. What is the ratio of the area of DBF \triangle DBF to that of ACE \triangle ACE? [asy] size(200);defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=3;
pair C = (0,0); pair E = (16,0); pair A = (0,12); pair F = waypoint(E--A,0.25); pair B = waypoint(A--C,0.25); pair D = waypoint(C--E,0.25);
dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);
label("AA",A,NW);label("BB",B,W);label("CC",C,SW);label("DD",D,S);label("EE",E,SE);label("FF",F,NE);
label("33",midpoint(A--B),W); label("99",midpoint(B--C),W); label("44",midpoint(C--D),S); label("1212",midpoint(D--E),S); label("55",midpoint(E--F),NE); label("1515",midpoint(F--A),NE);
draw(A--C--E--cycle); draw(B--F--D--cycle);[/asy]<spanclass=latexbold>(A)</span> 14<spanclass=latexbold>(B)</span> 925<spanclass=latexbold>(C)</span> 38<spanclass=latexbold>(D)</span> 1125<spanclass=latexbold>(E)</span> 716 <span class='latex-bold'>(A)</span>\ \frac {1}{4}\qquad <span class='latex-bold'>(B)</span>\ \frac {9}{25}\qquad <span class='latex-bold'>(C)</span>\ \frac {3}{8}\qquad <span class='latex-bold'>(D)</span>\ \frac {11}{25}\qquad <span class='latex-bold'>(E)</span>\ \frac {7}{16}

Annulus

An annulus is the region between two concentric circles. The concentric circles in the figure have radii b b and c c, with b>c b > c. Let OX \overline{OX} be a radius of the larger circle, let XZ \overline{XZ} be tangent to the smaller circle at Z Z, and let OY \overline{OY} be the radius of the larger circle that contains Z Z. Let a \equal{} XZ, d \equal{} YZ, and e \equal{} XY. What is the area of the annulus? <spanclass=latexbold>(A)</span> πa2<spanclass=latexbold>(B)</span> πb2<spanclass=latexbold>(C)</span> πc2<spanclass=latexbold>(D)</span> πd2<spanclass=latexbold>(E)</span> πe2 <span class='latex-bold'>(A)</span>\ \pi a^2 \qquad <span class='latex-bold'>(B)</span>\ \pi b^2 \qquad <span class='latex-bold'>(C)</span>\ \pi c^2 \qquad <span class='latex-bold'>(D)</span>\ \pi d^2 \qquad <span class='latex-bold'>(E)</span>\ \pi e^2 [asy]unitsize(1.4cm); defaultpen(linewidth(.8pt)); dotfactor=3;
real r1=1.0, r2=1.8; pair O=(0,0), Z=r1*dir(90), Y=r2*dir(90); pair X=intersectionpoints(Z--(Z.x+100,Z.y), Circle(O,r2))[0]; pair[] points={X,O,Y,Z};
filldraw(Circle(O,r2),mediumgray,black); filldraw(Circle(O,r1),white,black);
dot(points); draw(X--Y--O--cycle--Z);
label("OO",O,SSW,fontsize(10pt)); label("ZZ",Z,SW,fontsize(10pt)); label("YY",Y,N,fontsize(10pt)); label("XX",X,NE,fontsize(10pt));
defaultpen(fontsize(8pt));
label("cc",midpoint(O--Z),W); label("dd",midpoint(Z--Y),W); label("ee",midpoint(X--Y),NE); label("aa",midpoint(X--Z),N); label("bb",midpoint(O--X),SE);[/asy]
9
2
8
2
7
2
6
2
5
2
3
2
1
2