In △ABC points D and E lie on BC and AC, respectively. If AD and BE intersect at T so that AT/DT \equal{} 3 and BT/ET \equal{} 4, what is CD/BD?
[asy]unitsize(2cm);
defaultpen(linewidth(.8pt));pair A = (0,0);
pair C = (2,0);
pair B = dir(57.5)*2;
pair E = waypoint(C--A,0.25);
pair D = waypoint(C--B,0.25);
pair T = intersectionpoint(D--A,E--B);label("B",B,NW);label("A",A,SW);label("C",C,SE);label("D",D,NE);label("E",E,S);label("T",T,2*W+N);draw(A--B--C--cycle);
draw(A--D);
draw(B--E);[/asy]<spanclass=′latex−bold′>(A)</span>81<spanclass=′latex−bold′>(B)</span>92<spanclass=′latex−bold′>(C)</span>103<spanclass=′latex−bold′>(D)</span>114<spanclass=′latex−bold′>(E)</span>125