A Right Triangle Inside Another
Source:
January 15, 2009
ratiogeometrytrigonometry
Problem Statement
In right triangle , we have AC \equal{} 12, CE \equal{} 16, and EA \equal{} 20. Points , , and are located on , , and , respectively, so that AB \equal{} 3, CD \equal{} 4, and EF \equal{} 5. What is the ratio of the area of to that of ?
[asy]
size(200);defaultpen(linewidth(.8pt)+fontsize(8pt));
dotfactor=3;pair C = (0,0);
pair E = (16,0);
pair A = (0,12);
pair F = waypoint(E--A,0.25);
pair B = waypoint(A--C,0.25);
pair D = waypoint(C--E,0.25);dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);label("",A,NW);label("",B,W);label("",C,SW);label("",D,S);label("",E,SE);label("",F,NE);label("",midpoint(A--B),W);
label("",midpoint(B--C),W);
label("",midpoint(C--D),S);
label("",midpoint(D--E),S);
label("",midpoint(E--F),NE);
label("",midpoint(F--A),NE);draw(A--C--E--cycle);
draw(B--F--D--cycle);[/asy]