MathDB
Problem: 2004 AMC 10 #23

Source:

February 1, 2007
trigonometrysymmetry

Problem Statement

Circles AA, BB, and CC are externally tangent to each other and internally tangent to circle DD. Circles BB and CC are congruent. Circle AA has radius 1 and passes through the center of DD. What is the radius of circle BB?
[asy] size(200); defaultpen(linewidth(0.8));defaultpen(fontsize(8)); draw(Circle(origin, 2)); draw(Circle((-1,0), 1)); draw(Circle((6/9, 8/9), 8/9)); draw(Circle((6/9, -8/9), 8/9)); label("AA", (-1.2, -0.2), NE); label("BB", (6/9, 7/9), N); label("CC", (6/9, -7/9), S); label("DD", 2*dir(110), dir(110));[/asy]
<spanclass=latexbold>(A)</span>  23<spanclass=latexbold>(B)</span>  32<spanclass=latexbold>(C)</span>  78<spanclass=latexbold>(D)</span>  89<spanclass=latexbold>(E)</span>  1+33 <span class='latex-bold'>(A)</span>\; \frac23\qquad <span class='latex-bold'>(B)</span>\; \frac{\sqrt{3}}2\qquad <span class='latex-bold'>(C)</span>\; \frac78\qquad <span class='latex-bold'>(D)</span>\; \frac89\qquad <span class='latex-bold'>(E)</span>\; \frac{1+\sqrt3}3