MathDB
Ratio of Lines in a Triangle

Source:

January 15, 2009
ratiocircumcirclegeometryangle bisectorpower of a point

Problem Statement

In ABC \triangle ABC we have AB \equal{} 7, AC \equal{} 8, and BC \equal{} 9. Point D D is on the circumscribed circle of the triangle so that AD \overline{AD} bisects BAC \angle BAC. What is the value of AD/CD AD/CD? <spanclass=latexbold>(A)</span> 98<spanclass=latexbold>(B)</span> 53<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 177<spanclass=latexbold>(E)</span> 52 <span class='latex-bold'>(A)</span>\ \frac{9}{8}\qquad <span class='latex-bold'>(B)</span>\ \frac{5}{3}\qquad <span class='latex-bold'>(C)</span>\ 2\qquad <span class='latex-bold'>(D)</span>\ \frac{17}{7}\qquad <span class='latex-bold'>(E)</span>\ \frac{5}{2}