MathDB
Area of the Circle in the Intersection of Two Circles

Source:

January 15, 2009
geometrytrigonometry

Problem Statement

A circle of radius 1 1 is internally tangent to two circles of radius 2 2 at points A A and B B, where AB AB is a diameter of the smaller circle. What is the area of the region, shaded in the gure, that is outside the smaller circle and inside each of the two larger circles? [asy]size(200);defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;
pair B = (0,1); pair A = (0,-1);
label("BB",B,NW);label("AA",A,2S);
draw(Circle(A,2));draw(Circle(B,2));
fill((-sqrt(3),0)..B..(sqrt(3),0)--cycle,gray); fill((-sqrt(3),0)..A..(sqrt(3),0)--cycle,gray); draw((-sqrt(3),0)..B..(sqrt(3),0)); draw((-sqrt(3),0)..A..(sqrt(3),0));
path circ = Circle(origin,1);
fill(circ,white); draw(circ); dot(A);dot(B);
pair A1 = B + dir(45)*2; pair A2 = dir(45); pair A3 = dir(-135)*2 + A;
draw(B--A1,EndArrow(HookHead,2)); draw(origin--A2,EndArrow(HookHead,2)); draw(A--A3,EndArrow(HookHead,2));
label("22",midpoint(B--A1),NW); label("11",midpoint(origin--A2),NW); label("22",midpoint(A--A3),NW);[/asy] (A)\ \frac {5}{3}\pi \minus{} 3\sqrt {2}\qquad (B)\ \frac {5}{3}\pi \minus{} 2\sqrt {3}\qquad (C)\ \frac {8}{3}\pi \minus{} 3\sqrt {3}\qquad(D)\ \frac {8}{3}\pi \minus{} 3\sqrt {2} (E)\ \frac {8}{3}\pi \minus{} 2\sqrt {3}