MathDB

21

Part of 2004 AMC 10

Problems(2)

Problem: 2004 AMC 10 #21

Source:

2/1/2007
Two distinct lines pass through the center of three concentric circles of radii 33, 22, and 11. The area of the shaded region in the diagram is 8/138/13 of the area of the unshaded region. What is the radian measure of the acute angle formed by the two lines? (Note: π\pi radians is 180180 degrees.)
[asy] defaultpen(linewidth(0.8)); pair O=origin; fill(O--Arc(O, 2, 20, 160)--cycle, mediumgray); fill(O--Arc(O, 1, 20, 160)--cycle, white); fill(O--Arc(O, 2, 200, 340)--cycle, mediumgray); fill(O--Arc(O, 1, 200, 340)--cycle, white); fill(O--Arc(O, 3, 160, 200)--cycle, mediumgray); fill(O--Arc(O, 2, 160, 200)--cycle, white); fill(O--Arc(O, 1, 160, 200)--cycle, mediumgray); fill(O--Arc(O, 3, -20, 20)--cycle, mediumgray); fill(O--Arc(O, 2, -20, 20)--cycle, white); fill(O--Arc(O, 1, -20, 20)--cycle, mediumgray); draw(Circle(origin, 1));draw(Circle(origin, 2));draw(Circle(origin, 3)); draw(5*dir(200)--5*dir(20)^^5*dir(160)--5*dir(-20));[/asy]
<spanclass=latexbold>(A)</span>π8<spanclass=latexbold>(B)</span>π7<spanclass=latexbold>(C)</span>π6<spanclass=latexbold>(D)</span>π5<spanclass=latexbold>(E)</span>π4 <span class='latex-bold'>(A)</span> \frac{\pi}8\qquad <span class='latex-bold'>(B)</span>\frac{\pi}7\qquad <span class='latex-bold'>(C)</span>\frac{\pi}6\qquad <span class='latex-bold'>(D)</span>\frac{\pi}5\qquad <span class='latex-bold'>(E)</span>\frac{\pi}4
Two Arithmetic Progressions

Source:

1/15/2009
Let 1,4, 1,4,\cdots and 9,16, 9,16,\cdots be two arithmetic progressions. The set S S is the union of the fi rst 2004 2004 terms of each sequence. How many distinct numbers are in S S? <spanclass=latexbold>(A)</span> 3722<spanclass=latexbold>(B)</span> 3732<spanclass=latexbold>(C)</span> 3914<spanclass=latexbold>(D)</span> 3924<spanclass=latexbold>(E)</span> 4007 <span class='latex-bold'>(A)</span>\ 3722\qquad <span class='latex-bold'>(B)</span>\ 3732\qquad <span class='latex-bold'>(C)</span>\ 3914\qquad <span class='latex-bold'>(D)</span>\ 3924\qquad <span class='latex-bold'>(E)</span>\ 4007
modular arithmetic